TPTP Problem File: RNG041-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : RNG041-1 : TPTP v9.0.0. Released v1.0.0.
% Domain : Ring Theory
% Problem : Unknown
% Version : [Wos65] axioms.
% English :
% Refs : [Wos65] Wos (1965), Unpublished Note
% : [MOW76] McCharen et al. (1976), Problems and Experiments for a
% : [WM76] Wilson & Minker (1976), Resolution, Refinements, and S
% Source : [SPRFN]
% Names : Problem 30 [Wos65]
% : wos30 [WM76]
% Status : Unsatisfiable
% Rating : 0.00 v9.0.0, 0.05 v8.1.0, 0.00 v7.0.0, 0.13 v6.4.0, 0.07 v6.3.0, 0.09 v6.2.0, 0.10 v6.1.0, 0.07 v6.0.0, 0.10 v5.5.0, 0.30 v5.3.0, 0.28 v5.2.0, 0.25 v5.1.0, 0.24 v5.0.0, 0.07 v4.1.0, 0.08 v4.0.1, 0.18 v4.0.0, 0.09 v3.7.0, 0.10 v3.5.0, 0.09 v3.4.0, 0.08 v3.3.0, 0.14 v3.2.0, 0.15 v3.1.0, 0.09 v2.7.0, 0.17 v2.6.0, 0.10 v2.5.0, 0.08 v2.4.0, 0.22 v2.2.1, 0.11 v2.2.0, 0.11 v2.1.0, 0.22 v2.0.0
% Syntax : Number of clauses : 26 ( 13 unt; 2 nHn; 14 RR)
% Number of literals : 61 ( 6 equ; 35 neg)
% Maximal clause size : 5 ( 2 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 3 ( 2 usr; 0 prp; 2-3 aty)
% Number of functors : 8 ( 8 usr; 4 con; 0-2 aty)
% Number of variables : 77 ( 2 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments : These are the same axioms as in [MOW76].
%--------------------------------------------------------------------------
%----Include ring theory axioms
include('Axioms/RNG001-0.ax').
%--------------------------------------------------------------------------
cnf(multiplicative_identity1,hypothesis,
product(additive_identity,A,additive_identity) ).
cnf(multiplicative_identity2,hypothesis,
product(A,additive_identity,additive_identity) ).
cnf(right_multiplicative_identity,hypothesis,
product(A,multiplicative_identity,A) ).
cnf(left_multiplicative_identity,hypothesis,
product(multiplicative_identity,A,A) ).
cnf(clause41,hypothesis,
( product(A,h(A),multiplicative_identity)
| A = additive_identity ) ).
cnf(clause42,hypothesis,
( product(h(A),A,multiplicative_identity)
| A = additive_identity ) ).
cnf(a_times_b,negated_conjecture,
product(a,b,additive_identity) ).
cnf(a_not_additive_identity,negated_conjecture,
a != additive_identity ).
cnf(prove_b_is_additive_identity,negated_conjecture,
b != additive_identity ).
%--------------------------------------------------------------------------