TPTP Problem File: RNG038-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : RNG038-1 : TPTP v9.0.0. Released v1.0.0.
% Domain : Ring Theory
% Problem : Ring property 1
% Version : [Wos65] axioms.
% English :
% Refs : [Wos65] Wos (1965), Unpublished Note
% : [MOW76] McCharen et al. (1976), Problems and Experiments for a
% Source : [SPRFN]
% Names : Problem 27 [Wos65]
% Status : Unsatisfiable
% Rating : 0.00 v5.5.0, 0.06 v5.4.0, 0.07 v5.3.0, 0.08 v5.2.0, 0.00 v2.6.0, 0.14 v2.5.0, 0.00 v2.1.0, 0.00 v2.0.0
% Syntax : Number of clauses : 21 ( 9 unt; 0 nHn; 14 RR)
% Number of literals : 55 ( 5 equ; 36 neg)
% Maximal clause size : 5 ( 2 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 3 ( 2 usr; 0 prp; 2-3 aty)
% Number of functors : 7 ( 7 usr; 3 con; 0-2 aty)
% Number of variables : 73 ( 0 sgn)
% SPC : CNF_UNS_RFO_SEQ_HRN
% Comments : These are the same axioms as in [MOW76].
%--------------------------------------------------------------------------
%----Include ring theory axioms
include('Axioms/RNG001-0.ax').
%--------------------------------------------------------------------------
cnf(some_property,hypothesis,
( X != additive_identity
| product(X,h(X,Y),Y) ) ).
cnf(a_times_b,hypothesis,
product(a,b,additive_identity) ).
%----Proving either a or b is the additive_identity. Either clause will
%----do.
cnf(a_not_additive_identity,negated_conjecture,
a != additive_identity ).
cnf(prove_b_is_additive_identity,negated_conjecture,
b != additive_identity ).
%--------------------------------------------------------------------------