TPTP Problem File: RNG037-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : RNG037-1 : TPTP v9.0.0. Released v1.0.0.
% Domain : Ring Theory
% Problem : (X* -Y) + (X*Y) = additive_identity
% Version : [Wos65] axioms.
% English :
% Refs : [Wos65] Wos (1965), Unpublished Note
% : [MOW76] McCharen et al. (1976), Problems and Experiments for a
% Source : [SPRFN]
% Names : Problem 24 [Wos65]
% Status : Unsatisfiable
% Rating : 0.08 v9.0.0, 0.06 v8.2.0, 0.00 v6.0.0, 0.11 v5.5.0, 0.19 v5.4.0, 0.13 v5.3.0, 0.25 v5.2.0, 0.12 v5.1.0, 0.14 v5.0.0, 0.29 v4.1.0, 0.11 v4.0.1, 0.17 v3.7.0, 0.00 v3.1.0, 0.11 v2.7.0, 0.00 v2.6.0, 0.29 v2.5.0, 0.00 v2.2.1, 0.22 v2.2.0, 0.14 v2.1.0, 0.20 v2.0.0
% Syntax : Number of clauses : 20 ( 9 unt; 0 nHn; 14 RR)
% Number of literals : 53 ( 2 equ; 34 neg)
% Maximal clause size : 5 ( 2 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 3 ( 2 usr; 0 prp; 2-3 aty)
% Number of functors : 8 ( 8 usr; 5 con; 0-2 aty)
% Number of variables : 71 ( 0 sgn)
% SPC : CNF_UNS_RFO_SEQ_HRN
% Comments : These are the same axioms as in [MOW76].
%--------------------------------------------------------------------------
%----Include ring theory axioms
include('Axioms/RNG001-0.ax').
%--------------------------------------------------------------------------
cnf(a_times_b,hypothesis,
product(a,b,d) ).
cnf(a_inverse_times_b,hypothesis,
product(a,additive_inverse(b),c) ).
cnf(prove_sum_is_additive_identity,negated_conjecture,
~ sum(c,d,additive_identity) ).
%--------------------------------------------------------------------------