TPTP Problem File: RNG036-7.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : RNG036-7 : TPTP v9.0.0. Released v1.0.0.
% Domain : Ring Theory
% Problem : If X*X*X*X*X = X then the ring is commutative
% Version : [LW91] (equality) axioms.
% English : Given a ring in which for all x, x * x * x * x * x = x, prove
% that for all x and y, x * y = y * x.
% Refs : [LW91] Lusk & Wos (1991), Benchmark Problems in Which Equalit
% Source : [LW91]
% Names : RT4 [LW91]
% Status : Unknown
% Rating : 1.00 v2.0.0
% Syntax : Number of clauses : 12 ( 12 unt; 0 nHn; 2 RR)
% Number of literals : 12 ( 12 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 5 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 7 ( 7 usr; 4 con; 0-2 aty)
% Number of variables : 19 ( 0 sgn)
% SPC : CNF_UNK_RFO_PEQ_UEQ
% Comments :
%--------------------------------------------------------------------------
%----Include ring theory axioms
include('Axioms/RNG005-0.ax').
%--------------------------------------------------------------------------
cnf(x_fifthed_is_x,hypothesis,
multiply(X,multiply(X,multiply(X,multiply(X,X)))) = X ).
cnf(a_times_b_is_c,negated_conjecture,
multiply(a,b) = c ).
cnf(prove_commutativity,negated_conjecture,
multiply(b,a) != c ).
%--------------------------------------------------------------------------