TPTP Problem File: RNG033-7.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : RNG033-7 : TPTP v9.0.0. Released v1.0.0.
% Domain : Ring Theory (Alternative)
% Problem : A fairly complex equation with associators
% Version : [Ste87] (equality) axioms : Augmented.
% English : assr(X.Y,Z,W)+assr(X,Y,comm(Z,W)) = X.assr(Y,Z,W)+assr(X,Z,W).Y
% Refs : [Ste87] Stevens (1987), Some Experiments in Nonassociative Rin
% Source : [TPTP]
% Names :
% Status : Unknown
% Rating : 1.00 v2.0.0
% Syntax : Number of clauses : 23 ( 23 unt; 0 nHn; 1 RR)
% Number of literals : 23 ( 23 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 5 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 10 ( 10 usr; 5 con; 0-3 aty)
% Number of variables : 45 ( 2 sgn)
% SPC : CNF_UNK_RFO_PEQ_UEQ
% Comments :
%--------------------------------------------------------------------------
%----Include nonassociative ring axioms
include('Axioms/RNG003-0.ax').
%--------------------------------------------------------------------------
%----The next 7 clause are extra lemmas which Stevens found useful
cnf(product_of_inverses,axiom,
multiply(additive_inverse(X),additive_inverse(Y)) = multiply(X,Y) ).
cnf(inverse_product1,axiom,
multiply(additive_inverse(X),Y) = additive_inverse(multiply(X,Y)) ).
cnf(inverse_product2,axiom,
multiply(X,additive_inverse(Y)) = additive_inverse(multiply(X,Y)) ).
cnf(distributivity_of_difference1,axiom,
multiply(X,add(Y,additive_inverse(Z))) = add(multiply(X,Y),additive_inverse(multiply(X,Z))) ).
cnf(distributivity_of_difference2,axiom,
multiply(add(X,additive_inverse(Y)),Z) = add(multiply(X,Z),additive_inverse(multiply(Y,Z))) ).
cnf(distributivity_of_difference3,axiom,
multiply(additive_inverse(X),add(Y,Z)) = add(additive_inverse(multiply(X,Y)),additive_inverse(multiply(X,Z))) ).
cnf(distributivity_of_difference4,axiom,
multiply(add(X,Y),additive_inverse(Z)) = add(additive_inverse(multiply(X,Z)),additive_inverse(multiply(Y,Z))) ).
cnf(prove_challenge,negated_conjecture,
add(associator(multiply(x,y),z,w),associator(x,y,commutator(z,w))) != add(multiply(x,associator(y,z,w)),multiply(associator(x,z,w),y)) ).
%--------------------------------------------------------------------------