TPTP Problem File: RNG030-6.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : RNG030-6 : TPTP v9.0.0. Released v1.0.0.
% Domain : Ring Theory (Right alternative)
% Problem : 2*assr(X,X,Y)^3 = additive identity
% Version : [Ste87] (equality) axioms : Reduced > Complete.
% English :
% Refs : [Ste87] Stevens (1987), Some Experiments in Nonassociative Rin
% : [Oto07] Otop (2007), Solution to some Right Alternative Ring P
% Source : [Ste87]
% Names : Conjecture 1 [Ste87]
% Status : Satisfiable
% Rating : 1.00 v2.0.0
% Syntax : Number of clauses : 15 ( 15 unt; 0 nHn; 1 RR)
% Number of literals : 15 ( 15 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 5 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 8 ( 8 usr; 3 con; 0-3 aty)
% Number of variables : 25 ( 2 sgn)
% SPC : CNF_SAT_RFO_PEQ_UEQ
% Comments :
%--------------------------------------------------------------------------
%----Don't Include nonassociative ring axioms.
%----The left alternative law has to be omitted.
% include('axioms/RNG003-0.ax').
%--------------------------------------------------------------------------
%----Commutativity for addition
cnf(commutativity_for_addition,axiom,
add(X,Y) = add(Y,X) ).
%----Associativity for addition
cnf(associativity_for_addition,axiom,
add(X,add(Y,Z)) = add(add(X,Y),Z) ).
%----There exists an additive identity element
cnf(left_additive_identity,axiom,
add(additive_identity,X) = X ).
cnf(right_additive_identity,axiom,
add(X,additive_identity) = X ).
%----Multiplicative zero
cnf(left_multiplicative_zero,axiom,
multiply(additive_identity,X) = additive_identity ).
cnf(right_multiplicative_zero,axiom,
multiply(X,additive_identity) = additive_identity ).
%----Existence of left additive additive_inverse
cnf(left_additive_inverse,axiom,
add(additive_inverse(X),X) = additive_identity ).
cnf(right_additive_inverse,axiom,
add(X,additive_inverse(X)) = additive_identity ).
%----Distributive property of product over sum
cnf(distribute1,axiom,
multiply(X,add(Y,Z)) = add(multiply(X,Y),multiply(X,Z)) ).
cnf(distribute2,axiom,
multiply(add(X,Y),Z) = add(multiply(X,Z),multiply(Y,Z)) ).
%----Inverse of additive_inverse of X is X
cnf(additive_inverse_additive_inverse,axiom,
additive_inverse(additive_inverse(X)) = X ).
%----Right alternative law
cnf(right_alternative,axiom,
multiply(multiply(X,Y),Y) = multiply(X,multiply(Y,Y)) ).
%----Left alternative law
% input_clause(left_alternative,axiom,
% [++equal(multiply(multiply(X,X),Y),multiply(X,multiply(X,Y)))]).
%----Associator
cnf(associator,axiom,
associator(X,Y,Z) = add(multiply(multiply(X,Y),Z),additive_inverse(multiply(X,multiply(Y,Z)))) ).
%----Commutator
cnf(commutator,axiom,
commutator(X,Y) = add(multiply(Y,X),additive_inverse(multiply(X,Y))) ).
cnf(prove_conjecture_1,negated_conjecture,
add(multiply(associator(x,x,y),multiply(associator(x,x,y),associator(x,x,y))),multiply(associator(x,x,y),multiply(associator(x,x,y),associator(x,x,y)))) != additive_identity ).
%--------------------------------------------------------------------------