TPTP Problem File: RNG029-3.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : RNG029-3 : TPTP v9.0.0. Bugfixed v2.4.0.
% Domain : Ring Theory (Alternative)
% Problem : Middle Moufang identity
% Version : [AH90] (equality) axioms : Augmented.
% English :
% Refs : [AH90] Anantharaman & Hsiang (1990), Automated Proofs of the
% Source : [AH90]
% Names : PROOF V [AH90]
% Status : Unsatisfiable
% Rating : 0.60 v9.0.0, 0.47 v8.2.0, 0.50 v8.1.0, 0.58 v7.5.0, 0.53 v7.4.0, 0.59 v7.3.0, 0.62 v7.2.0, 0.58 v7.1.0, 0.45 v7.0.0, 0.62 v6.4.0, 0.64 v6.3.0, 0.60 v6.1.0, 0.82 v6.0.0, 0.71 v5.5.0, 0.75 v5.4.0, 0.78 v5.3.0, 0.80 v5.2.0, 0.62 v5.1.0, 0.67 v5.0.0, 0.80 v4.1.0, 0.56 v4.0.1, 0.62 v4.0.0, 0.43 v3.4.0, 0.33 v3.3.0, 0.44 v3.1.0, 0.20 v2.7.0, 0.62 v2.6.0, 0.67 v2.5.0, 1.00 v2.4.0
% Syntax : Number of clauses : 24 ( 22 unt; 0 nHn; 4 RR)
% Number of literals : 26 ( 26 equ; 3 neg)
% Maximal clause size : 2 ( 1 avg)
% Maximal term depth : 5 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 8 ( 8 usr; 4 con; 0-3 aty)
% Number of variables : 49 ( 2 sgn)
% SPC : CNF_UNS_RFO_PEQ_NUE
% Comments : This how the problem appears in [AH90].
%--------------------------------------------------------------------------
%----Include Ring theory (equality) axioms
include('Axioms/RNG004-0.ax').
%--------------------------------------------------------------------------
%----Right Moufang
cnf(right_moufang,hypothesis,
multiply(Z,multiply(X,multiply(Y,X))) = multiply(multiply(multiply(Z,X),Y),X) ).
%----Left Moufang
cnf(left_moufang,hypothesis,
multiply(multiply(X,multiply(Y,X)),Z) = multiply(X,multiply(Y,multiply(X,Z))) ).
%----Associator
cnf(associator,axiom,
associator(X,Y,Z) = add(multiply(multiply(X,Y),Z),additive_inverse(multiply(X,multiply(Y,Z)))) ).
%----The next three clauses are previously proved lemmas
cnf(middle_law,axiom,
multiply(multiply(Y,X),Y) = multiply(Y,multiply(X,Y)) ).
cnf(associator_skew_symmetry1,axiom,
associator(Y,X,Z) = additive_inverse(associator(X,Y,Z)) ).
cnf(associator_skew_symmetry2,axiom,
associator(Z,Y,X) = additive_inverse(associator(X,Y,Z)) ).
cnf(prove_middle_law,negated_conjecture,
multiply(multiply(cx,cy),multiply(cz,cx)) != multiply(cx,multiply(multiply(cy,cz),cx)) ).
%--------------------------------------------------------------------------