TPTP Problem File: RNG029-2.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : RNG029-2 : TPTP v9.0.0. Bugfixed v1.2.1.
% Domain : Ring Theory (Alternative)
% Problem : Middle Moufang identity
% Version : [AH90] (equality) axioms : Augmented.
% English :
% Refs : [AH90] Anantharaman & Hsiang (1990), Automated Proofs of the
% Source : [AH90]
% Names :
% Status : Unsatisfiable
% Rating : 0.93 v8.2.0, 1.00 v6.2.0, 0.90 v6.1.0, 1.00 v4.1.0, 0.89 v4.0.1, 1.00 v4.0.0, 0.86 v3.4.0, 1.00 v3.1.0, 0.80 v2.7.0, 1.00 v2.4.0, 0.75 v2.2.1, 0.83 v2.2.0, 1.00 v2.0.0
% Syntax : Number of clauses : 22 ( 20 unt; 0 nHn; 4 RR)
% Number of literals : 24 ( 24 equ; 3 neg)
% Maximal clause size : 2 ( 1 avg)
% Maximal term depth : 5 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 8 ( 8 usr; 4 con; 0-3 aty)
% Number of variables : 43 ( 2 sgn)
% SPC : CNF_UNS_RFO_PEQ_NUE
% Comments : This how the problem appears in [AH90], but without the
% left and right Moufang identities.
% Bugfixes : v1.2.1 - Clauses middle_law, associator_skew_symmetry1, and
% associator_skew_symmetry2, fixed.
%--------------------------------------------------------------------------
%----Include Ring theory (equality) axioms
include('Axioms/RNG004-0.ax').
%--------------------------------------------------------------------------
%----Associator
cnf(associator,axiom,
associator(X,Y,Z) = add(multiply(multiply(X,Y),Z),additive_inverse(multiply(X,multiply(Y,Z)))) ).
%----The next three clauses are previously proved lemmas
cnf(middle_law,axiom,
multiply(multiply(Y,X),Y) = multiply(Y,multiply(X,Y)) ).
cnf(associator_skew_symmetry1,axiom,
associator(Y,X,Z) = additive_inverse(associator(X,Y,Z)) ).
cnf(associator_skew_symmetry2,axiom,
associator(Z,Y,X) = additive_inverse(associator(X,Y,Z)) ).
cnf(prove_middle_law,negated_conjecture,
multiply(multiply(cx,cy),multiply(cz,cx)) != multiply(cx,multiply(multiply(cy,cz),cx)) ).
%--------------------------------------------------------------------------