TPTP Problem File: RNG027-10.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : RNG027-10 : TPTP v9.0.0. Released v7.5.0.
% Domain : Puzzles
% Problem : Right Moufang identity
% Version : Especial.
% English :
% Refs : [CS18] Claessen & Smallbone (2018), Efficient Encodings of Fi
% : [Sma18] Smallbone (2018), Email to Geoff Sutcliffe
% Source : [Sma18]
% Names :
% Status : Unsatisfiable
% Rating : 1.00 v8.2.0, 0.96 v8.1.0, 1.00 v7.5.0
% Syntax : Number of clauses : 23 ( 23 unt; 0 nHn; 2 RR)
% Number of literals : 23 ( 23 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 5 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 9 ( 9 usr; 4 con; 0-4 aty)
% Number of variables : 46 ( 3 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments : Converted from RNG027-2 to UEQ using [CS18].
%------------------------------------------------------------------------------
cnf(ifeq_axiom,axiom,
ifeq(A,A,B,C) = B ).
cnf(left_additive_identity,axiom,
add(additive_identity,X) = X ).
cnf(left_multiplicative_zero,axiom,
multiply(additive_identity,X) = additive_identity ).
cnf(right_multiplicative_zero,axiom,
multiply(X,additive_identity) = additive_identity ).
cnf(add_inverse,axiom,
add(additive_inverse(X),X) = additive_identity ).
cnf(sum_of_inverses,axiom,
additive_inverse(add(X,Y)) = add(additive_inverse(X),additive_inverse(Y)) ).
cnf(additive_inverse_additive_inverse,axiom,
additive_inverse(additive_inverse(X)) = X ).
cnf(multiply_over_add1,axiom,
multiply(X,add(Y,Z)) = add(multiply(X,Y),multiply(X,Z)) ).
cnf(multiply_over_add2,axiom,
multiply(add(X,Y),Z) = add(multiply(X,Z),multiply(Y,Z)) ).
cnf(right_alternative,axiom,
multiply(multiply(X,Y),Y) = multiply(X,multiply(Y,Y)) ).
cnf(left_alternative,axiom,
multiply(multiply(X,X),Y) = multiply(X,multiply(X,Y)) ).
cnf(inverse_product1,axiom,
multiply(additive_inverse(X),Y) = additive_inverse(multiply(X,Y)) ).
cnf(inverse_product2,axiom,
multiply(X,additive_inverse(Y)) = additive_inverse(multiply(X,Y)) ).
cnf(inverse_additive_identity,axiom,
additive_inverse(additive_identity) = additive_identity ).
cnf(commutativity_for_addition,axiom,
add(X,Y) = add(Y,X) ).
cnf(associativity_for_addition,axiom,
add(X,add(Y,Z)) = add(add(X,Y),Z) ).
cnf(left_cancellation_for_addition,axiom,
ifeq(add(X,Z),add(Y,Z),X,Y) = Y ).
cnf(right_cancellation_for_addition,axiom,
ifeq(add(Z,X),add(Z,Y),X,Y) = Y ).
cnf(associator,axiom,
associator(X,Y,Z) = add(multiply(multiply(X,Y),Z),additive_inverse(multiply(X,multiply(Y,Z)))) ).
cnf(middle_law,axiom,
multiply(multiply(Y,X),Y) = multiply(Y,multiply(X,Y)) ).
cnf(associator_skew_symmetry1,axiom,
associator(Y,X,Z) = additive_inverse(associator(X,Y,Z)) ).
cnf(associator_skew_symmetry2,axiom,
associator(Z,Y,X) = additive_inverse(associator(X,Y,Z)) ).
cnf(prove_right_moufang,negated_conjecture,
multiply(cz,multiply(cx,multiply(cy,cx))) != multiply(multiply(multiply(cz,cx),cy),cx) ).
%------------------------------------------------------------------------------