TPTP Problem File: RNG025-8.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : RNG025-8 : TPTP v9.0.0. Released v1.0.0.
% Domain : Ring Theory (Alternative)
% Problem : Middle or Flexible Law
% Version : [Ste87] (equality) axioms : Reduced & Augmented > Complete.
% Theorem formulation : Linearized.
% English :
% Refs : [Ste87] Stevens (1987), Some Experiments in Nonassociative Rin
% Source : [TPTP]
% Names :
% Status : Satisfiable
% Rating : 0.43 v9.0.0, 0.22 v8.2.0, 0.00 v8.1.0, 0.25 v7.5.0, 0.00 v6.2.0, 0.17 v6.1.0, 0.40 v6.0.0, 0.20 v5.5.0, 0.40 v5.4.0, 0.50 v5.3.0, 0.67 v5.2.0, 0.33 v3.2.0, 0.67 v3.1.0, 0.33 v2.4.0, 0.67 v2.2.1, 0.75 v2.2.0, 0.67 v2.1.0, 1.00 v2.0.0
% Syntax : Number of clauses : 18 ( 18 unt; 0 nHn; 1 RR)
% Number of literals : 18 ( 18 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 4 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 9 ( 9 usr; 4 con; 0-3 aty)
% Number of variables : 36 ( 2 sgn)
% SPC : CNF_SAT_RFO_PEQ_UEQ
% Comments :
%--------------------------------------------------------------------------
%----Don't Include nonassociative ring axioms.
%----The associator has to be replaced by its linearised form.
% include('axioms/RNG003-0.ax').
%--------------------------------------------------------------------------
%----Commutativity for addition
cnf(commutativity_for_addition,axiom,
add(X,Y) = add(Y,X) ).
%----Associativity for addition
cnf(associativity_for_addition,axiom,
add(X,add(Y,Z)) = add(add(X,Y),Z) ).
%----There exists an additive identity element
cnf(left_additive_identity,axiom,
add(additive_identity,X) = X ).
cnf(right_additive_identity,axiom,
add(X,additive_identity) = X ).
%----Multiplicative zero
cnf(left_multiplicative_zero,axiom,
multiply(additive_identity,X) = additive_identity ).
cnf(right_multiplicative_zero,axiom,
multiply(X,additive_identity) = additive_identity ).
%----Existence of left additive additive_inverse
cnf(left_additive_inverse,axiom,
add(additive_inverse(X),X) = additive_identity ).
cnf(right_additive_inverse,axiom,
add(X,additive_inverse(X)) = additive_identity ).
%----Distributive property of product over sum
cnf(distribute1,axiom,
multiply(X,add(Y,Z)) = add(multiply(X,Y),multiply(X,Z)) ).
cnf(distribute2,axiom,
multiply(add(X,Y),Z) = add(multiply(X,Z),multiply(Y,Z)) ).
%----Inverse of additive_inverse of X is X
cnf(additive_inverse_additive_inverse,axiom,
additive_inverse(additive_inverse(X)) = X ).
%----Right alternative law
cnf(right_alternative,axiom,
multiply(multiply(X,Y),Y) = multiply(X,multiply(Y,Y)) ).
%----Left alternative law
cnf(left_alternative,axiom,
multiply(multiply(X,X),Y) = multiply(X,multiply(X,Y)) ).
%----Associator
% input_clause(associator,axiom,
% [++equal(associator(X,Y,Z),add(multiply(multiply(X,Y),Z),
% additive_inverse(multiply(X,multiply(Y,Z)))))]).
%----Linearised for of the associator
cnf(linearised_associator1,axiom,
associator(X,Y,add(U,V)) = add(associator(X,Y,U),associator(X,Y,V)) ).
cnf(linearised_associator2,axiom,
associator(X,add(U,V),Y) = add(associator(X,U,Y),associator(X,V,Y)) ).
cnf(linearised_associator3,axiom,
associator(add(U,V),X,Y) = add(associator(U,X,Y),associator(V,X,Y)) ).
%----Commutator
cnf(commutator,axiom,
commutator(X,Y) = add(multiply(Y,X),additive_inverse(multiply(X,Y))) ).
cnf(prove_flexible_law,negated_conjecture,
add(associator(a,b,c),associator(a,c,b)) != additive_identity ).
%--------------------------------------------------------------------------