TPTP Problem File: RNG010-7.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : RNG010-7 : TPTP v9.0.0. Bugfixed v2.3.0.
% Domain : Ring Theory (Right alternative)
% Problem : Skew symmetry of the auxilliary function
% Version : [Ste87] (equality) axioms : Augmented.
% English : The three Moufang identities imply the skew symmetry
% of s(W,X,Y,Z) = (W*X,Y,Z) - X*(W,Y,Z) - (X,Y,Z)*W.
% Recall that skew symmetry means that the function sign
% changes when any two arguments are swapped. This problem
% proves the case for swapping the first two arguments.
% Refs : [Ste87] Stevens (1987), Some Experiments in Nonassociative Rin
% Source : [TPTP]
% Names :
% Status : Unknown
% Rating : 1.00 v2.3.0
% Syntax : Number of clauses : 27 ( 27 unt; 0 nHn; 1 RR)
% Number of literals : 27 ( 27 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 6 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 11 ( 11 usr; 5 con; 0-4 aty)
% Number of variables : 58 ( 2 sgn)
% SPC : CNF_UNK_RFO_PEQ_UEQ
% Comments : Extra lemmas added to help the ITP prover.
% Bugfixes : v2.3.0 - Clause prove_skew_symmetry fixed.
% : v2.3.0 - Left alternative law added in.
% : v2.3.0 - Clauses right_moufang and left_moufang fixed.
%--------------------------------------------------------------------------
%----Include nonassociative ring axioms.
include('Axioms/RNG003-0.ax').
%--------------------------------------------------------------------------
%----The next 7 clauses are extra lemmas which Stevens found useful
cnf(product_of_inverses,axiom,
multiply(additive_inverse(X),additive_inverse(Y)) = multiply(X,Y) ).
cnf(inverse_product1,axiom,
multiply(additive_inverse(X),Y) = additive_inverse(multiply(X,Y)) ).
cnf(inverse_product2,axiom,
multiply(X,additive_inverse(Y)) = additive_inverse(multiply(X,Y)) ).
cnf(distributivity_of_difference1,axiom,
multiply(X,add(Y,additive_inverse(Z))) = add(multiply(X,Y),additive_inverse(multiply(X,Z))) ).
cnf(distributivity_of_difference2,axiom,
multiply(add(X,additive_inverse(Y)),Z) = add(multiply(X,Z),additive_inverse(multiply(Y,Z))) ).
cnf(distributivity_of_difference3,axiom,
multiply(additive_inverse(X),add(Y,Z)) = add(additive_inverse(multiply(X,Y)),additive_inverse(multiply(X,Z))) ).
cnf(distributivity_of_difference4,axiom,
multiply(add(X,Y),additive_inverse(Z)) = add(additive_inverse(multiply(X,Z)),additive_inverse(multiply(Y,Z))) ).
%----Definition of s
cnf(defines_s,axiom,
s(W,X,Y,Z) = add(add(associator(multiply(W,X),Y,Z),additive_inverse(multiply(X,associator(W,Y,Z)))),additive_inverse(multiply(associator(X,Y,Z),W))) ).
%----Right Moufang
cnf(right_moufang,hypothesis,
multiply(Z,multiply(X,multiply(Y,X))) = multiply(multiply(multiply(Z,X),Y),X) ).
%----Left Moufang
cnf(left_moufang,hypothesis,
multiply(multiply(X,multiply(Y,X)),Z) = multiply(X,multiply(Y,multiply(X,Z))) ).
cnf(middle_moufang,hypothesis,
multiply(multiply(X,Y),multiply(Z,X)) = multiply(multiply(X,multiply(Y,Z)),X) ).
cnf(prove_skew_symmetry,negated_conjecture,
s(a,b,c,d) != additive_inverse(s(b,a,c,d)) ).
%--------------------------------------------------------------------------