TPTP Problem File: RNG010-5.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : RNG010-5 : TPTP v9.0.0. Bugfixed v2.3.0.
% Domain : Ring Theory (Right alternative)
% Problem : Skew symmetry of the auxilliary function
% Version : [Ove90] (equality) axioms :
% Incomplete > Augmented > Incomplete.
% English : The three Moufang identities imply the skew symmetry
% of s(W,X,Y,Z) = (W*X,Y,Z) - X*(W,Y,Z) - (X,Y,Z)*W.
% Recall that skew symmetry means that the function sign
% changes when any two arguments are swapped. This problem
% proves the case for swapping the first two arguments.
% Refs : [Ove90] Overbeek (1990), ATP competition announced at CADE-10
% : [Ove93] Overbeek (1993), The CADE-11 Competitions: A Personal
% : [LM93] Lusk & McCune (1993), Uniform Strategies: The CADE-11
% : [Zha93] Zhang (1993), Automated Proofs of Equality Problems in
% Source : [Ove90]
% Names : CADE-11 Competition Eq-9 [Ove90]
% : THEOREM EQ-9 [LM93]
% : PROBLEM 9 [Zha93]
% Status : Unknown
% Rating : 1.00 v2.3.0
% Syntax : Number of clauses : 27 ( 27 unt; 0 nHn; 2 RR)
% Number of literals : 27 ( 27 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 6 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 11 ( 11 usr; 5 con; 0-4 aty)
% Number of variables : 52 ( 2 sgn)
% SPC : CNF_UNK_RFO_PEQ_UEQ
% Comments : I copied this directly. I think the Moufang identities may
% be wrong. At least they're in another form.
% : Yes, now they known to be wrong, and bugfixed in v2.3.0.
% Bugfixes : v2.3.0 - Clauses right_moufang and left_moufang fixed.
%--------------------------------------------------------------------------
%----Commutativity of addition
cnf(commutative_addition,axiom,
add(X,Y) = add(Y,X) ).
%----Associativity of addition
cnf(associative_addition,axiom,
add(add(X,Y),Z) = add(X,add(Y,Z)) ).
%----Additive identity
cnf(right_identity,axiom,
add(X,additive_identity) = X ).
cnf(left_identity,axiom,
add(additive_identity,X) = X ).
%----Additive inverse
cnf(right_additive_inverse,axiom,
add(X,additive_inverse(X)) = additive_identity ).
cnf(left_additive_inverse,axiom,
add(additive_inverse(X),X) = additive_identity ).
%----Inverse of identity is identity, stupid
cnf(additive_inverse_identity,axiom,
additive_inverse(additive_identity) = additive_identity ).
%----Axiom of Overbeek
cnf(property_of_inverse_and_add,axiom,
add(X,add(additive_inverse(X),Y)) = Y ).
%----Inverse of (x + y) is additive_inverse(x) + additive_inverse(y),
cnf(distribute_additive_inverse,axiom,
additive_inverse(add(X,Y)) = add(additive_inverse(X),additive_inverse(Y)) ).
%----Inverse of additive_inverse of X is X
cnf(additive_inverse_additive_inverse,axiom,
additive_inverse(additive_inverse(X)) = X ).
%----Behavior of 0 and the multiplication operation
cnf(multiply_additive_id1,axiom,
multiply(X,additive_identity) = additive_identity ).
cnf(multiply_additive_id2,axiom,
multiply(additive_identity,X) = additive_identity ).
%----Axiom of Overbeek
cnf(product_of_inverse,axiom,
multiply(additive_inverse(X),additive_inverse(Y)) = multiply(X,Y) ).
%----x * additive_inverse(y) = additive_inverse (x * y),
cnf(multiply_additive_inverse1,axiom,
multiply(X,additive_inverse(Y)) = additive_inverse(multiply(X,Y)) ).
cnf(multiply_additive_inverse2,axiom,
multiply(additive_inverse(X),Y) = additive_inverse(multiply(X,Y)) ).
%----Distributive property of product over sum
cnf(distribute1,axiom,
multiply(X,add(Y,Z)) = add(multiply(X,Y),multiply(X,Z)) ).
cnf(distribute2,axiom,
multiply(add(X,Y),Z) = add(multiply(X,Z),multiply(Y,Z)) ).
%----Right alternative law
cnf(right_alternative,axiom,
multiply(multiply(X,Y),Y) = multiply(X,multiply(Y,Y)) ).
%----Associator
cnf(associator,axiom,
associator(X,Y,Z) = add(multiply(multiply(X,Y),Z),additive_inverse(multiply(X,multiply(Y,Z)))) ).
%----Commutator
cnf(commutator,axiom,
commutator(X,Y) = add(multiply(Y,X),additive_inverse(multiply(X,Y))) ).
%----Middle associator identity
cnf(middle_associator,axiom,
multiply(multiply(associator(X,X,Y),X),associator(X,X,Y)) = additive_identity ).
%----Left alternative law
cnf(left_alternative,axiom,
multiply(multiply(X,X),Y) = multiply(X,multiply(X,Y)) ).
%----Definition of s
cnf(defines_s,axiom,
s(W,X,Y,Z) = add(add(associator(multiply(W,X),Y,Z),additive_inverse(multiply(X,associator(W,Y,Z)))),additive_inverse(multiply(associator(X,Y,Z),W))) ).
%----Right Moufang
cnf(right_moufang,hypothesis,
multiply(Z,multiply(X,multiply(Y,X))) = multiply(multiply(multiply(Z,X),Y),X) ).
%----Left Moufang
cnf(left_moufang,hypothesis,
multiply(multiply(X,multiply(Y,X)),Z) = multiply(X,multiply(Y,multiply(X,Z))) ).
%----Middle Moufang
cnf(middle_moufang,hypothesis,
multiply(multiply(X,Y),multiply(Z,X)) = multiply(multiply(X,multiply(Y,Z)),X) ).
cnf(prove_skew_symmetry,negated_conjecture,
s(a,b,c,d) != additive_inverse(s(b,a,c,d)) ).
%--------------------------------------------------------------------------