TPTP Problem File: RNG010-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : RNG010-1 : TPTP v9.0.0. Bugfixed v1.2.1.
% Domain : Ring Theory (Alternative)
% Problem : Skew symmetry of the auxilliary function
% Version : [AH90] (equality) axioms.
% Theorem formulation : In terms of the associator
% English : The left and right Moufang identities imply the skew symmetry
% of s(W,X,Y,Z) = (W*X,Y,Z) - X*(W,Y,Z) - (X,Y,Z)*W.
% Recall that skew symmetry means that the function sign
% changes when any two arguments are swapped. This problem
% proves the case for swapping the first two arguments.
% Refs : [AH90] Anantharaman & Hsiang (1990), Automated Proofs of the
% Source : [TPTP]
% Names :
% Status : Unsatisfiable
% Rating : 1.00 v2.2.1, 1.00 v2.0.0
% Syntax : Number of clauses : 21 ( 19 unt; 0 nHn; 4 RR)
% Number of literals : 23 ( 23 equ; 3 neg)
% Maximal clause size : 2 ( 1 avg)
% Maximal term depth : 5 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 8 ( 8 usr; 4 con; 0-3 aty)
% Number of variables : 41 ( 2 sgn)
% SPC : CNF_UNS_RFO_PEQ_NUE
% Comments :
% Bugfixes : v1.2.1 - Clause left_moufang fixed.
%--------------------------------------------------------------------------
%----Include Ring theory (equality) axioms
include('Axioms/RNG004-0.ax').
%--------------------------------------------------------------------------
%----Associator
cnf(associator,axiom,
associator(X,Y,Z) = add(multiply(multiply(X,Y),Z),additive_inverse(multiply(X,multiply(Y,Z)))) ).
cnf(right_moufang,hypothesis,
multiply(Z,multiply(X,multiply(Y,X))) = multiply(multiply(multiply(Z,X),Y),X) ).
cnf(left_moufang,hypothesis,
multiply(multiply(X,multiply(Y,X)),Z) = multiply(X,multiply(Y,multiply(X,Z))) ).
cnf(prove_skew_symmetry,negated_conjecture,
associator(multiply(cx,cx),cy,cz) != add(multiply(associator(cx,cy,cz),cx),multiply(cx,associator(cx,cy,cz))) ).
%--------------------------------------------------------------------------