TPTP Problem File: RNG008-6.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : RNG008-6 : TPTP v9.0.0. Released v1.0.0.
% Domain : Ring Theory
% Problem : Boolean rings are commutative
% Version : [MOW76] axioms : Augmented.
% English : Given a ring in which for all x, x * x = x, prove that for
% all x and y, x * y = y * x.
% Refs : [MOW76] McCharen et al. (1976), Problems and Experiments for a
% : [Ove90] Overbeek (1990), ATP competition announced at CADE-10
% : [Ove93] Overbeek (1993), The CADE-11 Competitions: A Personal
% : [LM93] Lusk & McCune (1993), Uniform Strategies: The CADE-11
% Source : [Ove90]
% Names : CADE-11 Competition 3 [Ove90]
% : THEOREM 3 [LM93]
% Status : Unsatisfiable
% Rating : 0.08 v9.0.0, 0.12 v8.2.0, 0.00 v8.1.0, 0.11 v7.5.0, 0.10 v7.4.0, 0.11 v7.2.0, 0.12 v7.1.0, 0.00 v6.0.0, 0.44 v5.5.0, 0.62 v5.4.0, 0.60 v5.3.0, 0.67 v5.2.0, 0.38 v5.1.0, 0.29 v5.0.0, 0.14 v4.1.0, 0.11 v4.0.1, 0.00 v4.0.0, 0.17 v3.5.0, 0.00 v3.1.0, 0.22 v2.7.0, 0.00 v2.6.0, 0.43 v2.5.0, 0.20 v2.4.0, 0.50 v2.3.0, 0.33 v2.2.1, 0.67 v2.2.0, 0.71 v2.1.0, 0.75 v2.0.0
% Syntax : Number of clauses : 22 ( 11 unt; 0 nHn; 13 RR)
% Number of literals : 55 ( 2 equ; 34 neg)
% Maximal clause size : 5 ( 2 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 3 ( 2 usr; 0 prp; 2-3 aty)
% Number of functors : 7 ( 7 usr; 4 con; 0-2 aty)
% Number of variables : 74 ( 2 sgn)
% SPC : CNF_UNS_RFO_SEQ_HRN
% Comments : Supplies multiplication to identity as lemmas
%--------------------------------------------------------------------------
%----Include ring theory axioms
include('Axioms/RNG001-0.ax').
%--------------------------------------------------------------------------
cnf(x_times_identity_x_is_identity,axiom,
product(X,additive_identity,additive_identity) ).
cnf(identity_times_x_is_identity,axiom,
product(additive_identity,X,additive_identity) ).
cnf(x_squared_is_x,hypothesis,
product(X,X,X) ).
cnf(a_times_b_is_c,hypothesis,
product(a,b,c) ).
cnf(prove_b_times_a_is_c,negated_conjecture,
~ product(b,a,c) ).
%--------------------------------------------------------------------------