TPTP Problem File: RNG008-5.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : RNG008-5 : TPTP v9.0.0. Released v1.0.0.
% Domain : Ring Theory
% Problem : Boolean rings are commutative
% Version : [MOW76] axioms : Augmented.
% Theorem formulation : Equality.
% English : Given a ring in which for all x, x * x = x, prove that for
% all x and y, x * y = y * x.
% Refs : [MOW76] McCharen et al. (1976), Problems and Experiments for a
% : [PS81] Peterson & Stickel (1981), Complete Sets of Reductions
% Source : [ANL]
% Names : commute.ver1.in [ANL]
% Status : Unsatisfiable
% Rating : 0.08 v9.0.0, 0.06 v8.2.0, 0.00 v8.1.0, 0.11 v7.5.0, 0.10 v7.4.0, 0.22 v7.2.0, 0.25 v7.1.0, 0.14 v6.3.0, 0.00 v6.1.0, 0.20 v6.0.0, 0.33 v5.5.0, 0.69 v5.4.0, 0.67 v5.3.0, 0.75 v5.2.0, 0.38 v5.1.0, 0.43 v5.0.0, 0.29 v4.1.0, 0.33 v4.0.1, 0.17 v4.0.0, 0.33 v3.7.0, 0.17 v3.5.0, 0.00 v3.2.0, 0.14 v3.1.0, 0.33 v2.7.0, 0.17 v2.6.0, 0.43 v2.5.0, 0.20 v2.4.0, 0.33 v2.3.0, 0.17 v2.2.1, 0.67 v2.2.0, 0.71 v2.1.0, 0.50 v2.0.0
% Syntax : Number of clauses : 26 ( 15 unt; 0 nHn; 14 RR)
% Number of literals : 59 ( 2 equ; 34 neg)
% Maximal clause size : 5 ( 2 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 3 ( 2 usr; 0 prp; 2-3 aty)
% Number of functors : 7 ( 7 usr; 4 con; 0-2 aty)
% Number of variables : 79 ( 2 sgn)
% SPC : CNF_UNS_RFO_SEQ_HRN
% Comments : Extra lemmas based on [PS81] equality axioms.
%--------------------------------------------------------------------------
%----Include ring theory axioms
include('Axioms/RNG001-0.ax').
%--------------------------------------------------------------------------
%----The next six clauses are the extra lemmas.
%----Inverse of identity is identity
cnf(additive_inverse_identity,axiom,
sum(additive_inverse(additive_identity),additive_identity,additive_identity) ).
%----Inverse of inverse of X is X
cnf(additive_inverse_additive_inverse,axiom,
sum(additive_inverse(additive_inverse(X)),additive_identity,X) ).
%----Behavior of additive_identity and the multiplication operation
cnf(multiply_additive_id1,axiom,
product(X,additive_identity,additive_identity) ).
cnf(multiply_additive_id2,axiom,
product(additive_identity,X,additive_identity) ).
%----Inverse of (x + y) is additive_inverse(x) + additive_inverse(y),
cnf(distribute_additive_inverse,axiom,
sum(additive_inverse(X),additive_inverse(Y),additive_inverse(add(X,Y))) ).
%----x * additive_inverse(y) = additive_inverse (x * y),
cnf(multiply_additive_inverse,axiom,
product(X,additive_inverse(Y),additive_inverse(multiply(X,Y))) ).
%----Clauses for the theorem
cnf(x_squared_is_x,hypothesis,
product(X,X,X) ).
cnf(a_times_b_is_c,hypothesis,
product(a,b,c) ).
cnf(prove_b_times_a_is_c,negated_conjecture,
~ product(b,a,c) ).
%--------------------------------------------------------------------------