TPTP Problem File: RNG008-4.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : RNG008-4 : TPTP v9.0.0. Released v1.0.0.
% Domain : Ring Theory
% Problem : Boolean rings are commutative
% Version : [PS81] (equality) axioms.
% Theorem formulation : Equality.
% English : Given a ring in which for all x, x * x = x, prove that for
% all x and y, x * y = y * x.
% Refs : [MOW76] McCharen et al. (1976), Problems and Experiments for a
% : [PS81] Peterson & Stickel (1981), Complete Sets of Reductions
% Source : [TPTP]
% Names :
% Status : Unsatisfiable
% Rating : 0.05 v8.2.0, 0.04 v8.1.0, 0.10 v7.5.0, 0.12 v7.4.0, 0.17 v7.3.0, 0.16 v7.1.0, 0.06 v7.0.0, 0.11 v6.4.0, 0.16 v6.3.0, 0.12 v6.2.0, 0.14 v6.1.0, 0.12 v6.0.0, 0.29 v5.5.0, 0.26 v5.4.0, 0.07 v5.3.0, 0.08 v5.2.0, 0.14 v5.1.0, 0.13 v5.0.0, 0.07 v4.1.0, 0.00 v4.0.1, 0.07 v4.0.0, 0.08 v3.7.0, 0.00 v3.3.0, 0.07 v3.1.0, 0.11 v2.7.0, 0.00 v2.2.1, 0.22 v2.2.0, 0.29 v2.1.0, 0.25 v2.0.0
% Syntax : Number of clauses : 17 ( 17 unt; 0 nHn; 3 RR)
% Number of literals : 17 ( 17 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 3 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 7 ( 7 usr; 4 con; 0-2 aty)
% Number of variables : 26 ( 2 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments :
%--------------------------------------------------------------------------
%----Include ring theory axioms
include('Axioms/RNG002-0.ax').
%--------------------------------------------------------------------------
cnf(boolean_ring,hypothesis,
multiply(X,X) = X ).
cnf(a_times_b_is_c,negated_conjecture,
multiply(a,b) = c ).
cnf(prove_commutativity,negated_conjecture,
multiply(b,a) != c ).
%--------------------------------------------------------------------------