TPTP Problem File: RNG008-2.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : RNG008-2 : TPTP v9.0.0. Released v1.0.0.
% Domain : Ring Theory
% Problem : Boolean rings are commutative
% Version : [MOW76] axioms : Augmented.
% English : Given a ring in which for all x, x * x = x, prove that for
% all x and y, x * y = y * x.
% Refs : [MOW76] McCharen et al. (1976), Problems and Experiments for a
% : [OMW76] Overbeek et al. (1976), Complexity and Related Enhance
% Source : [MOW76]
% Names : R3 [MOW76]
% : Theorem 2 [OMW76]
% Status : Unsatisfiable
% Rating : 0.08 v9.0.0, 0.06 v8.2.0, 0.08 v8.1.0, 0.11 v7.5.0, 0.00 v7.4.0, 0.11 v7.2.0, 0.12 v7.1.0, 0.14 v7.0.0, 0.00 v6.0.0, 0.33 v5.5.0, 0.62 v5.4.0, 0.60 v5.3.0, 0.67 v5.2.0, 0.38 v5.1.0, 0.29 v5.0.0, 0.14 v4.1.0, 0.00 v4.0.0, 0.17 v3.5.0, 0.00 v3.1.0, 0.22 v2.7.0, 0.00 v2.6.0, 0.43 v2.5.0, 0.20 v2.4.0, 0.17 v2.2.1, 0.67 v2.2.0, 0.71 v2.1.0, 0.50 v2.0.0
% Syntax : Number of clauses : 22 ( 9 unt; 0 nHn; 15 RR)
% Number of literals : 59 ( 4 equ; 38 neg)
% Maximal clause size : 5 ( 2 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 3 ( 2 usr; 0 prp; 2-3 aty)
% Number of functors : 7 ( 7 usr; 4 con; 0-2 aty)
% Number of variables : 80 ( 0 sgn)
% SPC : CNF_UNS_RFO_SEQ_HRN
% Comments :
%--------------------------------------------------------------------------
%----Include ring theory axioms
include('Axioms/RNG001-0.ax').
%--------------------------------------------------------------------------
cnf(cancellation1,axiom,
( ~ sum(X,Y,Z)
| ~ sum(X,W,Z)
| Y = W ) ).
cnf(cancellation2,axiom,
( ~ sum(X,Y,Z)
| ~ sum(W,Y,Z)
| X = W ) ).
cnf(x_squared_is_x,hypothesis,
product(X,X,X) ).
cnf(a_times_b_is_c,hypothesis,
product(a,b,c) ).
cnf(prove_b_times_a_is_c,negated_conjecture,
~ product(b,a,c) ).
%--------------------------------------------------------------------------