TPTP Problem File: RNG007-5.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : RNG007-5 : TPTP v9.0.0. Released v1.0.0.
% Domain : Ring Theory
% Problem : In Boolean rings, X is its own inverse
% Version : [MOW76] axioms : Augmented.
% Theorem formulation : Equality.
% English : Given a ring in which for all x, x * x = x, prove that for
% all x, x + x = additive_identity.
% Refs : [MOW76] McCharen et al. (1976), Problems and Experiments for a
% : [PS81] Peterson & Stickel (1981), Complete Sets of Reductions
% Source : [ANL]
% Names : lemma.ver1.in [ANL]
% Status : Satisfiable
% Rating : 0.44 v9.0.0, 0.40 v8.2.0, 0.60 v8.1.0, 0.62 v7.5.0, 0.56 v7.4.0, 0.55 v7.3.0, 0.56 v7.1.0, 0.62 v7.0.0, 0.57 v6.4.0, 0.29 v6.3.0, 0.25 v6.2.0, 0.10 v6.1.0, 0.33 v6.0.0, 0.29 v5.5.0, 0.38 v5.4.0, 0.70 v5.3.0, 0.67 v5.2.0, 0.70 v5.0.0, 0.78 v4.1.0, 0.71 v4.0.1, 0.80 v4.0.0, 0.50 v3.7.0, 0.33 v3.4.0, 0.50 v3.3.0, 0.33 v3.2.0, 0.80 v3.1.0, 0.67 v2.7.0, 0.33 v2.6.0, 0.86 v2.5.0, 0.50 v2.4.0, 0.67 v2.2.1, 0.75 v2.2.0, 0.67 v2.1.0, 1.00 v2.0.0
% Syntax : Number of clauses : 25 ( 14 unt; 0 nHn; 13 RR)
% Number of literals : 58 ( 3 equ; 34 neg)
% Maximal clause size : 5 ( 2 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 3 ( 2 usr; 0 prp; 2-3 aty)
% Number of functors : 5 ( 5 usr; 2 con; 0-2 aty)
% Number of variables : 79 ( 2 sgn)
% SPC : CNF_SAT_RFO_EQU_NUE
% Comments : Extra lemmas based on [PS81] equality axioms.
%--------------------------------------------------------------------------
%----Include ring theory axioms
include('Axioms/RNG001-0.ax').
%--------------------------------------------------------------------------
%----The next six clauses are the extra lemmas.
%----Inverse of identity is identity
cnf(additive_inverse_identity,axiom,
sum(additive_inverse(additive_identity),additive_identity,additive_identity) ).
%----Inverse of inverse of X is X
cnf(additive_inverse_additive_inverse,axiom,
sum(additive_inverse(additive_inverse(X)),additive_identity,X) ).
%----Behavior of additive_identity and the multiplication operation
cnf(multiply_additive_id1,axiom,
product(X,additive_identity,additive_identity) ).
cnf(multiply_additive_id2,axiom,
product(additive_identity,X,additive_identity) ).
%----Inverse of (x + y) is additive_inverse(x) + additive_inverse(y),
cnf(distribute_additive_inverse,axiom,
sum(additive_inverse(X),additive_inverse(Y),additive_inverse(add(X,Y))) ).
%----x * additive_inverse(y) = additive_inverse (x * y),
cnf(multiply_additive_inverse,axiom,
product(X,additive_inverse(Y),additive_inverse(multiply(X,Y))) ).
%----Clauses for the theorem
cnf(x_squared_is_x,hypothesis,
product(X,X,X) ).
cnf(prove_a_plus_a_is_id,negated_conjecture,
multiply(a,a) != additive_identity ).
%--------------------------------------------------------------------------