TPTP Problem File: RNG007-4.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : RNG007-4 : TPTP v9.0.0. Released v1.0.0.
% Domain : Ring Theory
% Problem : In Boolean rings, X is its own inverse
% Version : [Peterson & Stickel, 1981] (equality) axioms.
% Theorem formulation : Equality.
% English : Given a ring in which for all x, x * x = x, prove that for
% all x, x + x = additive_identity
% Refs : [PS81] Peterson & Stickel (1981), Complete Sets of Reductions
% Source : [ANL]
% Names : lemma.ver2.in [ANL]
% Status : Unsatisfiable
% Rating : 0.00 v7.4.0, 0.04 v7.3.0, 0.00 v7.0.0, 0.05 v6.3.0, 0.06 v6.2.0, 0.07 v6.1.0, 0.06 v6.0.0, 0.14 v5.5.0, 0.11 v5.4.0, 0.00 v5.1.0, 0.07 v4.1.0, 0.09 v4.0.1, 0.07 v4.0.0, 0.08 v3.7.0, 0.00 v2.2.1, 0.11 v2.2.0, 0.14 v2.1.0, 0.13 v2.0.0
% Syntax : Number of clauses : 16 ( 16 unt; 0 nHn; 2 RR)
% Number of literals : 16 ( 16 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 3 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 5 ( 5 usr; 2 con; 0-2 aty)
% Number of variables : 26 ( 2 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments :
%--------------------------------------------------------------------------
%----Include ring theory axioms
include('Axioms/RNG002-0.ax').
%--------------------------------------------------------------------------
cnf(boolean_ring,hypothesis,
multiply(X,X) = X ).
cnf(prove_inverse,negated_conjecture,
add(a,a) != additive_identity ).
%--------------------------------------------------------------------------