TPTP Problem File: RNG006-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : RNG006-1 : TPTP v9.0.0. Released v1.0.0.
% Domain : Ring Theory
% Problem : X*(Y+ -Z) = (X*Y) + -(X*Z)
% Version : [Wos65] axioms : Augmented.
% English :
% Refs : [Wos65] Wos (1965), Unpublished Note
% : [MOW76] McCharen et al. (1976), Problems and Experiments for a
% Source : [SPRFN]
% Names : Problem 25 [Wos65]
% Status : Unsatisfiable
% Rating : 0.00 v8.2.0, 0.08 v8.1.0, 0.00 v6.0.0, 0.22 v5.5.0, 0.19 v5.4.0, 0.13 v5.3.0, 0.17 v5.2.0, 0.25 v5.1.0, 0.14 v5.0.0, 0.00 v4.0.0, 0.17 v3.5.0, 0.00 v3.1.0, 0.11 v2.7.0, 0.00 v2.2.1, 0.22 v2.2.0, 0.14 v2.1.0, 0.00 v2.0.0
% Syntax : Number of clauses : 25 ( 11 unt; 0 nHn; 19 RR)
% Number of literals : 61 ( 2 equ; 37 neg)
% Maximal clause size : 5 ( 2 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 3 ( 2 usr; 0 prp; 2-3 aty)
% Number of functors : 11 ( 11 usr; 8 con; 0-2 aty)
% Number of variables : 80 ( 0 sgn)
% SPC : CNF_UNS_RFO_SEQ_HRN
% Comments : These are the same axioms as in [MOW76].
%--------------------------------------------------------------------------
%----Include ring theory axioms
include('Axioms/RNG001-0.ax').
%--------------------------------------------------------------------------
cnf(product_lemma1,axiom,
( ~ product(A,B,C)
| product(A,additive_inverse(B),additive_inverse(C)) ) ).
cnf(product_lemma2,axiom,
( ~ product(A,B,C)
| product(additive_inverse(A),B,additive_inverse(C)) ) ).
cnf(product_lemma3,axiom,
( ~ product(A,B,C)
| product(additive_inverse(A),additive_inverse(B),C) ) ).
cnf(b_plus_inverse_c,hypothesis,
sum(b,additive_inverse(c),bS_Ic) ).
cnf(a_times_b,hypothesis,
product(a,b,aPb) ).
cnf(a_times_c,hypothesis,
product(a,c,aPc) ).
cnf(aPb_plus_IaPc,hypothesis,
sum(aPb,additive_inverse(aPc),aPb_S_IaPc) ).
cnf(prove_a_times_bS_Ic_is_aPb_S__IaPc,negated_conjecture,
~ product(a,bS_Ic,aPb_S_IaPc) ).
%--------------------------------------------------------------------------