TPTP Problem File: RNG001-4.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : RNG001-4 : TPTP v9.0.0. Released v1.0.0.
% Domain : Ring Theory
% Problem : X.additive_identity = additive_identity for any X
% Version : [MOW76] axioms : Augmented.
% English :
% Refs : [MOW76] McCharen et al. (1976), Problems and Experiments for a
% Source : [MOW76]
% Names : R1 [MOW76]
% Status : Unsatisfiable
% Rating : 0.00 v5.5.0, 0.12 v5.4.0, 0.13 v5.3.0, 0.25 v5.2.0, 0.00 v2.6.0, 0.14 v2.5.0, 0.00 v2.2.1, 0.11 v2.2.0, 0.14 v2.1.0, 0.00 v2.0.0
% Syntax : Number of clauses : 20 ( 7 unt; 0 nHn; 14 RR)
% Number of literals : 57 ( 4 equ; 38 neg)
% Maximal clause size : 5 ( 2 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 3 ( 2 usr; 0 prp; 2-3 aty)
% Number of functors : 5 ( 5 usr; 2 con; 0-2 aty)
% Number of variables : 79 ( 0 sgn)
% SPC : CNF_UNS_RFO_SEQ_HRN
% Comments : Includes left and right cancellation lemmas.
%--------------------------------------------------------------------------
%----Include ring theory axioms
include('Axioms/RNG001-0.ax').
%--------------------------------------------------------------------------
cnf(cancellation1,axiom,
( ~ sum(X,Y,Z)
| ~ sum(X,W,Z)
| Y = W ) ).
cnf(cancellation2,axiom,
( ~ sum(X,Y,Z)
| ~ sum(W,Y,Z)
| X = W ) ).
cnf(prove_a_times_additive_id_is_additive_id,negated_conjecture,
~ product(a,additive_identity,additive_identity) ).
%--------------------------------------------------------------------------