TPTP Problem File: RNG001-2.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : RNG001-2 : TPTP v9.0.0. Released v1.0.0.
% Domain : Ring Theory
% Problem : X.additive_identity = additive_identity for any X
% Version : [LS74] axioms : Incomplete.
% English :
% Refs : [LS74] Lawrence & Starkey (1974), Experimental Tests of Resol
% : [WM76] Wilson & Minker (1976), Resolution, Refinements, and S
% Source : [SPRFN]
% Names : ls37 [LS74]
% : ls37 [WM76]
% Status : Unsatisfiable
% Rating : 0.40 v9.0.0, 0.09 v8.2.0, 0.14 v8.1.0, 0.00 v7.4.0, 0.17 v7.3.0, 0.00 v6.2.0, 0.17 v6.1.0, 0.50 v6.0.0, 0.44 v5.5.0, 0.62 v5.4.0, 0.72 v5.3.0, 0.75 v5.2.0, 0.54 v5.1.0, 0.62 v5.0.0, 0.53 v4.1.0, 0.60 v4.0.1, 0.57 v3.4.0, 0.40 v3.3.0, 0.00 v3.2.0, 0.33 v2.7.0, 0.38 v2.6.0, 0.43 v2.4.0, 0.57 v2.3.0, 0.86 v2.2.1, 1.00 v2.1.0, 0.86 v2.0.0
% Syntax : Number of clauses : 18 ( 7 unt; 0 nHn; 12 RR)
% Number of literals : 51 ( 0 equ; 34 neg)
% Maximal clause size : 5 ( 2 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 3 ( 3 usr; 0 prp; 2-3 aty)
% Number of functors : 5 ( 5 usr; 2 con; 0-2 aty)
% Number of variables : 71 ( 0 sgn)
% SPC : CNF_UNS_RFO_NEQ_HRN
% Comments :
%--------------------------------------------------------------------------
%----Don't Include ring theory axioms
%include('Axioms/RNG001-0.ax').
%--------------------------------------------------------------------------
cnf(sum_substitution3,axiom,
( ~ equalish(A,B)
| ~ sum(C,D,A)
| sum(C,D,B) ) ).
cnf(additive_identity1,axiom,
sum(additive_identity,X,X) ).
cnf(additive_identity2,axiom,
sum(X,additive_identity,X) ).
cnf(closure_of_multiplication,axiom,
product(X,Y,multiply(X,Y)) ).
cnf(closure_of_addition,axiom,
sum(X,Y,add(X,Y)) ).
cnf(additive_inverse1,axiom,
sum(additive_inverse(X),X,additive_identity) ).
cnf(additive_inverse2,axiom,
sum(X,additive_inverse(X),additive_identity) ).
cnf(associativity_of_addition1,axiom,
( ~ sum(X,Y,U)
| ~ sum(Y,Z,V)
| ~ sum(U,Z,W)
| sum(X,V,W) ) ).
cnf(associativity_of_addition2,axiom,
( ~ sum(X,Y,U)
| ~ sum(Y,Z,V)
| ~ sum(X,V,W)
| sum(U,Z,W) ) ).
cnf(commutativity_of_addition,axiom,
( ~ sum(X,Y,Z)
| sum(Y,X,Z) ) ).
cnf(associativity_of_multiplication1,axiom,
( ~ product(X,Y,U)
| ~ product(Y,Z,V)
| ~ product(U,Z,W)
| product(X,V,W) ) ).
cnf(associativity_of_multiplication2,axiom,
( ~ product(X,Y,U)
| ~ product(Y,Z,V)
| ~ product(X,V,W)
| product(U,Z,W) ) ).
cnf(distributivity1,axiom,
( ~ product(X,Y,V1)
| ~ product(X,Z,V2)
| ~ sum(Y,Z,V3)
| ~ product(X,V3,V4)
| sum(V1,V2,V4) ) ).
cnf(distributivity2,axiom,
( ~ product(X,Y,V1)
| ~ product(X,Z,V2)
| ~ sum(Y,Z,V3)
| ~ sum(V1,V2,V4)
| product(X,V3,V4) ) ).
cnf(distributivity3,axiom,
( ~ product(Y,X,V1)
| ~ product(Z,X,V2)
| ~ sum(Y,Z,V3)
| ~ product(V3,X,V4)
| sum(V1,V2,V4) ) ).
cnf(distributivity4,axiom,
( ~ product(Y,X,V1)
| ~ product(Z,X,V2)
| ~ sum(Y,Z,V3)
| ~ sum(V1,V2,V4)
| product(V3,X,V4) ) ).
%----Equality axioms for operators
cnf(addition_is_well_defined,axiom,
( ~ sum(X,Y,U)
| ~ sum(X,Y,V)
| equalish(U,V) ) ).
%input_clause(multiplication_is_well_defined,axiom,
% [--product(X,Y,U),
% --product(X,Y,V),
% ++equalish(U,V)]).
cnf(theorem,negated_conjecture,
~ product(a,additive_identity,additive_identity) ).
%--------------------------------------------------------------------------