TPTP Problem File: REL031+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : REL031+1 : TPTP v9.0.0. Released v4.0.0.
% Domain : Relation Algebra
% Problem : Partial functions are closed under composition
% Version : [Mad95] (equational) axioms.
% English : If x and y are partial functions then x;y is also a partial
% functions.
% Refs : [Mad95] Maddux (1995), Relation-Algebraic Semantics
% : [Hoe08] Hoefner (2008), Email to G. Sutcliffe
% Source : [Hoe08]
% Names :
% Status : Theorem
% Rating : 0.06 v9.0.0, 0.10 v8.2.0, 0.25 v8.1.0, 0.22 v7.5.0, 0.24 v7.4.0, 0.29 v7.3.0, 0.15 v7.2.0, 0.17 v7.1.0, 0.18 v7.0.0, 0.27 v6.4.0, 0.36 v6.3.0, 0.43 v6.2.0, 0.45 v6.1.0, 0.42 v6.0.0, 0.50 v5.5.0, 0.25 v5.4.0, 0.22 v5.3.0, 0.00 v4.1.0, 0.18 v4.0.1, 0.20 v4.0.0
% Syntax : Number of formulae : 14 ( 13 unt; 0 def)
% Number of atoms : 16 ( 16 equ)
% Maximal formula atoms : 3 ( 1 avg)
% Number of connectives : 2 ( 0 ~; 0 |; 1 &)
% ( 0 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 5 ( 3 avg)
% Maximal term depth : 5 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 8 ( 8 usr; 3 con; 0-2 aty)
% Number of variables : 27 ( 27 !; 0 ?)
% SPC : FOF_THM_RFO_PEQ
% Comments : x is a partial function if x^;x is a subidentity.
%------------------------------------------------------------------------------
%---Include axioms for relation algebra
include('Axioms/REL001+0.ax').
%------------------------------------------------------------------------------
fof(goals,conjecture,
! [X0,X1] :
( ( join(composition(converse(X0),X0),one) = one
& join(composition(converse(X1),X1),one) = one )
=> join(composition(converse(composition(X0,X1)),composition(X0,X1)),one) = one ) ).
%------------------------------------------------------------------------------