TPTP Problem File: REL025-2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : REL025-2 : TPTP v9.0.0. Released v4.0.0.
% Domain : Relation Algebra
% Problem : For subidentities converse is redundant
% Version : [Mad95] (equational) axioms
% English : If x is a subidentity then the converse of x equals x.
% Refs : [Mad95] Maddux (1995), Relation-Algebraic Semantics
% : [Hoe08] Hoefner (2008), Email to G. Sutcliffe
% Source : [Hoe08]
% Names :
% Status : Unsatisfiable
% Rating : 0.53 v9.0.0, 0.47 v8.2.0, 0.56 v8.1.0, 0.63 v7.5.0, 0.53 v7.4.0, 0.59 v7.3.0, 0.54 v7.2.0, 0.58 v7.1.0, 0.45 v7.0.0, 0.54 v6.4.0, 0.64 v6.3.0, 0.60 v6.1.0, 0.73 v6.0.0, 0.43 v5.5.0, 0.50 v5.4.0, 0.67 v5.3.0, 0.70 v5.2.0, 0.62 v5.1.0, 0.67 v5.0.0, 0.60 v4.1.0, 0.56 v4.0.1, 0.62 v4.0.0
% Syntax : Number of clauses : 15 ( 14 unt; 0 nHn; 2 RR)
% Number of literals : 16 ( 16 equ; 2 neg)
% Maximal clause size : 2 ( 1 avg)
% Maximal term depth : 5 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 9 ( 9 usr; 4 con; 0-2 aty)
% Number of variables : 25 ( 0 sgn)
% SPC : CNF_UNS_RFO_PEQ_NUE
% Comments : tptp2X -f tptp:short -t cnf:otter REL025+2.p
%------------------------------------------------------------------------------
%----Include axioms of relation algebra
include('Axioms/REL001-0.ax').
%------------------------------------------------------------------------------
cnf(goals_14,negated_conjecture,
join(sk1,one) = one ).
cnf(goals_17,negated_conjecture,
( join(sk1,converse(sk1)) != converse(sk1)
| join(converse(sk1),sk1) != sk1 ) ).
%------------------------------------------------------------------------------