TPTP Problem File: REL025+2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : REL025+2 : TPTP v9.0.0. Released v4.0.0.
% Domain : Relation Algebra
% Problem : For subidentities converse is redundant
% Version : [Mad95] (equational) axioms
% English : If x is a subidentity then the converse of x equals x.
% Refs : [Mad95] Maddux (1995), Relation-Algebraic Semantics
% : [Hoe08] Hoefner (2008), Email to G. Sutcliffe
% Source : [Hoe08]
% Names :
% Status : Theorem
% Rating : 0.41 v9.0.0, 0.45 v8.2.0, 0.58 v8.1.0, 0.70 v7.5.0, 0.76 v7.4.0, 0.71 v7.3.0, 0.62 v7.2.0, 0.58 v7.1.0, 0.45 v7.0.0, 0.60 v6.4.0, 0.57 v6.2.0, 0.55 v6.1.0, 0.58 v6.0.0, 0.67 v5.5.0, 0.62 v5.4.0, 0.44 v5.3.0, 0.33 v5.2.0, 0.29 v5.0.0, 0.25 v4.1.0, 0.55 v4.0.1, 0.40 v4.0.0
% Syntax : Number of formulae : 14 ( 13 unt; 0 def)
% Number of atoms : 17 ( 17 equ)
% Maximal formula atoms : 4 ( 1 avg)
% Number of connectives : 3 ( 0 ~; 0 |; 1 &)
% ( 0 <=>; 2 =>; 0 <=; 0 <~>)
% Maximal formula depth : 4 ( 3 avg)
% Maximal term depth : 5 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 8 ( 8 usr; 3 con; 0-2 aty)
% Number of variables : 26 ( 26 !; 0 ?)
% SPC : FOF_THM_RFO_PEQ
% Comments : Proof goal is split into 2 inequations (encoded again as
% equations).
%------------------------------------------------------------------------------
%---Include axioms for relation algebra
include('Axioms/REL001+0.ax').
%------------------------------------------------------------------------------
fof(goals,conjecture,
! [X0] :
( ( join(X0,one) = one
=> join(converse(X0),X0) = X0 )
& ( join(X0,one) = one
=> join(X0,converse(X0)) = converse(X0) ) ) ).
%------------------------------------------------------------------------------