TPTP Problem File: REL010+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : REL010+1 : TPTP v9.0.0. Released v4.0.0.
% Domain : Relation Algebra
% Problem : Schroeder equivalence (first implication)
% Version : [Mad95] (equational) axioms.
% English : Describes the interplay between composition, converse and
% complement, w.r.t. containment.
% Refs : [Mad95] Maddux (1995), Relation-Algebraic Semantics
% : [Hoe08] Hoefner (2008), Email to G. Sutcliffe
% Source : [Hoe08]
% Names :
% Status : Theorem
% Rating : 0.59 v9.0.0, 0.60 v8.2.0, 0.62 v8.1.0, 0.70 v7.5.0, 0.62 v7.4.0, 0.65 v7.3.0, 0.46 v7.2.0, 0.50 v7.1.0, 0.45 v7.0.0, 0.60 v6.4.0, 0.57 v6.2.0, 0.73 v6.1.0, 0.75 v5.4.0, 0.56 v5.3.0, 0.50 v5.2.0, 0.43 v5.0.0, 0.25 v4.1.0, 0.55 v4.0.1, 0.60 v4.0.0
% Syntax : Number of formulae : 14 ( 13 unt; 0 def)
% Number of atoms : 15 ( 15 equ)
% Maximal formula atoms : 2 ( 1 avg)
% Number of connectives : 1 ( 0 ~; 0 |; 0 &)
% ( 0 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 5 ( 3 avg)
% Maximal term depth : 5 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 8 ( 8 usr; 3 con; 0-2 aty)
% Number of variables : 28 ( 28 !; 0 ?)
% SPC : FOF_THM_RFO_PEQ
% Comments :
%------------------------------------------------------------------------------
%---Include axioms for relation algebra
include('Axioms/REL001+0.ax').
%------------------------------------------------------------------------------
fof(goals,conjecture,
! [X0,X1,X2] :
( meet(composition(X0,X1),X2) = zero
=> meet(X1,composition(converse(X0),X2)) = zero ) ).
%------------------------------------------------------------------------------