TPTP Problem File: RAL070^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : RAL070^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Real Algebra (Functions and their graphs)
% Problem : The University of Tokyo, 2013, Humanities Course, Problem 1
% Version : [Mat16] axioms : Especial.
% English : Let C be the graph of the function y=x(x - 1)(x - 3), let l be
% the straight line with the inclination t passing through the
% origin O, and assume that C and l have common points other than
% O. Let O, P, and Q be the common points of C and l, and g(t),
% the product of |vec{OP}| and |vec{OQ}|. However, if one of such
% common points is a point of contact, the point is regarded as
% two among O, P, and Q. Investigate the increase/decrease of the
% function g(t), and find the extremums of the function.
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : Univ-Tokyo-2013-Bun-1.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3486 ( 728 unt;1200 typ; 0 def)
% Number of atoms : 6650 (2216 equ; 0 cnn)
% Maximal formula atoms : 20 ( 2 avg)
% Number of connectives : 39651 ( 106 ~; 236 |;1185 &;35997 @)
% (1095 <=>;1032 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4472 ( 371 atm;1208 fun; 953 num;1940 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1217 (1174 usr; 71 con; 0-9 aty)
% Number of variables : 8066 ( 407 ^;7087 !; 436 ?;8066 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: RCF; Author: Takuya Matsuzaki; Generated: 2013-11-11
% : Answer
% ^ [V_y_opt_dot_0: $real] :
% ( ( V_y_opt_dot_0
% = ( $quotient @ ( $sum @ 36.0 @ ( $product @ 4.0 @ ( 'sqrt/1' @ 6.0 ) ) ) @ 9.0 ) )
% | ( V_y_opt_dot_0
% = ( $quotient @ ( $difference @ 36.0 @ ( $product @ 4.0 @ ( 'sqrt/1' @ 6.0 ) ) ) @ 9.0 ) ) ) )
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf('t/0_type',type,
't/0': $real ).
thf(p_qustion,conjecture,
( 'find/1' @ $real
@ ^ [V_y_opt: $real] :
? [V_g: 'R2R',V_C: '2d.Shape',V_O: '2d.Point',V_l: '2d.Shape',V_P: '2d.Point',V_Q: '2d.Point',V_x_opt: $real] :
( ( V_C
= ( '2d.graph-of/1'
@ ( 'fun/1'
@ ^ [V_x: $real] : ( $product @ V_x @ ( $product @ ( $difference @ V_x @ 1.0 ) @ ( $difference @ V_x @ 3.0 ) ) ) ) ) )
& ( V_O = '2d.origin/0' )
& ( '2d.line-type/1' @ V_l )
& ( '2d.is-slope-of/2' @ 't/0' @ V_l )
& ( '2d.on/2' @ V_O @ V_l )
& ( '2d.on/2' @ V_P @ V_l )
& ( '2d.on/2' @ V_Q @ V_l )
& ( '2d.on/2' @ V_P @ V_C )
& ( '2d.on/2' @ V_Q @ V_C )
& ( ( V_O != V_P )
| ( V_O != V_Q ) )
& ! [V_R: '2d.Point'] :
( ( ( '2d.on/2' @ V_R @ V_C )
& ( '2d.on/2' @ V_R @ V_l ) )
=> ( ( V_R = V_O )
| ( V_R = V_P )
| ( V_R = V_Q ) ) )
& ! [V_t_dot_0: $real] :
( ( 'funapp/2' @ V_g @ V_t_dot_0 )
= ( $product @ ( '2d.distance/2' @ V_O @ V_P ) @ ( '2d.distance/2' @ V_O @ V_Q ) ) )
& ( 'func-extreme/3' @ V_g @ V_x_opt @ V_y_opt ) ) ) ).
%------------------------------------------------------------------------------