TPTP Problem File: RAL068^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : RAL068^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Real Algebra (Algebraic curves)
% Problem : The University of Tokyo, 1991, Science Course, Problem 2
% Version : [Mat16] axioms : Especial.
% English : Let a, b, and c be positive real numbers. Consider the plate R
% consisting of the points (x, y, z) that satisfy |x|le a, |y|le
% b, and z=c in the xyz space. When the point light source P makes
% a circuit on the ellipse x^2/a^2+y^2/b^2=1, z=c+1 on the plane
% z=c+1, draw the figure formed by the locus of the shade of the
% plate R, and find the area of the figure.
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : Univ-Tokyo-1991-Ri-2.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3488 ( 727 unt;1202 typ; 0 def)
% Number of atoms : 7020 (2213 equ; 0 cnn)
% Maximal formula atoms : 20 ( 3 avg)
% Number of connectives : 39649 ( 104 ~; 233 |;1182 &;36004 @)
% (1095 <=>;1031 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4480 ( 376 atm;1207 fun; 960 num;1937 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1220 (1177 usr; 74 con; 0-9 aty)
% Number of variables : 8061 ( 408 ^;7085 !; 432 ?;8061 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: RCF; Author: Tomoya Ishii; Generated: 2014-04-15
% : Answer
% ^ [V_S_dot_0: $real] :
% ( V_S_dot_0
% = ( $product @ ( $sum @ ( $product @ ( $sum @ 'Pi/0' @ 12.0 ) @ ( '^/2' @ 'c/0' @ 2.0 ) ) @ ( $sum @ ( $product @ 16.0 @ 'c/0' ) @ 4.0 ) ) @ ( $product @ 'a/0' @ 'b/0' ) ) ) )
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf('a/0_type',type,
'a/0': $real ).
thf('b/0_type',type,
'b/0': $real ).
thf('c/0_type',type,
'c/0': $real ).
thf(p_qustion,conjecture,
( 'find/1' @ $real
@ ^ [V_S: $real] :
? [V_R: '3d.Shape'] :
( ( $lesseq @ 0.0 @ 'a/0' )
& ( $lesseq @ 0.0 @ 'b/0' )
& ( $lesseq @ 0.0 @ 'c/0' )
& ( V_R
= ( '3d.shape-of-cpfun/1'
@ ^ [V_p_dot_0: '3d.Point'] :
( ( $lesseq @ ( 'abs/1' @ ( '3d.x-coord/1' @ V_p_dot_0 ) ) @ 'a/0' )
& ( $lesseq @ ( 'abs/1' @ ( '3d.y-coord/1' @ V_p_dot_0 ) ) @ 'b/0' )
& ( ( '3d.z-coord/1' @ V_p_dot_0 )
= 'c/0' ) ) ) )
& ( V_S
= ( '3d.area-of/1'
@ ( '3d.shape-of-cpfun/1'
@ ^ [V_p: '3d.Point'] :
( ( '3d.on/2' @ V_p @ '3d.xy-plane/0' )
& ? [V_P: '3d.Point',V_PP: '3d.Point'] :
( ( ( $sum @ ( $quotient @ ( '^/2' @ ( '3d.x-coord/1' @ V_P ) @ 2.0 ) @ ( '^/2' @ 'a/0' @ 2.0 ) ) @ ( $quotient @ ( '^/2' @ ( '3d.y-coord/1' @ V_P ) @ 2.0 ) @ ( '^/2' @ 'a/0' @ 2.0 ) ) )
= 1.0 )
& ( ( '3d.z-coord/1' @ V_P )
= ( $sum @ 'c/0' @ 1.0 ) )
& ( '3d.on/2' @ V_PP @ V_R )
& ( '3d.on/2' @ V_PP @ ( '3d.line/2' @ V_P @ V_p ) ) ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------