TPTP Problem File: RAL067^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : RAL067^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Real Algebra (Functions and their graphs)
% Problem : The University of Tokyo, 1989, Humanities Course, Problem 2
% Version : [Mat16] axioms : Especial.
% English : Consider the following two parabolas for a > 0: C_1 : y = x^2
% +1/a^2 C_2 : y = -(x-a)^2 (1) Prove that there always exist 2
% straight lines that are in contact with both C_1 and C_2. (2) Find
% the minimum value of the area S(a) of the quadrilateral defined by
% the four points determined in (1).
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : Univ-Tokyo-1989-Bun-2.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3485 ( 728 unt;1199 typ; 0 def)
% Number of atoms : 6981 (2213 equ; 0 cnn)
% Maximal formula atoms : 31 ( 3 avg)
% Number of connectives : 39633 ( 105 ~; 233 |;1180 &;35988 @)
% (1095 <=>;1032 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4474 ( 372 atm;1207 fun; 956 num;1939 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1211 (1168 usr; 65 con; 0-9 aty)
% Number of variables : 8066 ( 407 ^;7086 !; 437 ?;8066 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: RCF; Author: Yiyang Zhan; Generated: 2014-03-13
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf(p1,conjecture,
! [V_a: $real] :
( ( $greater @ V_a @ 0.0 )
=> ? [V_C1: '2d.Shape',V_C2: '2d.Shape'] :
( ( V_C1
= ( '2d.graph-of/1'
@ ( 'fun/1'
@ ^ [V_x_dot_0: $real] : ( $sum @ ( '^/2' @ V_x_dot_0 @ 2.0 ) @ ( $quotient @ 1.0 @ ( '^/2' @ V_a @ 2.0 ) ) ) ) ) )
& ( V_C2
= ( '2d.graph-of/1'
@ ( 'fun/1'
@ ^ [V_x: $real] : ( $uminus @ ( '^/2' @ ( $difference @ V_x @ V_a ) @ 2.0 ) ) ) ) )
& ? [V_p1: '2d.Point',V_p2: '2d.Point',V_q1: '2d.Point',V_q2: '2d.Point',V_l: '2d.Shape',V_m: '2d.Shape'] :
( ( V_l
= ( '2d.line/2' @ V_p1 @ V_p2 ) )
& ( V_m
= ( '2d.line/2' @ V_q1 @ V_q2 ) )
& ( V_l != V_m )
& ( '2d.tangent/2' @ V_l @ V_C1 )
& ( '2d.tangent/2' @ V_l @ V_C2 )
& ( '2d.tangent/2' @ V_m @ V_C1 )
& ( '2d.tangent/2' @ V_m @ V_C2 ) ) ) ) ).
%------------------------------------------------------------------------------