TPTP Problem File: RAL066^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : RAL066^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Real Algebra (Numbers and algebraic expressions)
% Problem : Tohoku University, 2013, Science Course, Problem 1
% Version : [Mat16] axioms : Especial.
% English : Let k be a real number. For the cubic equation f(x)= x^3 - k x^2
% - 1, let {alpha}, {beta}, and {gamma} be the three solutions of
% the equation f(x)= 0. Assume that g(x) is a cubic equation of
% which the coefficient of x^3 is 1, and let {alpha} {beta},
% {beta} {gamma}, and {gamma} {alpha} be the three solutions of
% the equation g(x)= 0. (1) Represent g(x) using k. (2) Find the
% value of k such that the equations f(x)= 0 and g(x)= 0 have
% common solutions.
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : Univ-Tohoku-2013-Ri-1.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3486 ( 711 unt;1200 typ; 0 def)
% Number of atoms : 7891 (2209 equ; 0 cnn)
% Maximal formula atoms : 40 ( 3 avg)
% Number of connectives : 39658 ( 104 ~; 233 |;1174 &;36021 @)
% (1095 <=>;1031 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4476 ( 371 atm;1208 fun; 955 num;1942 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1213 (1170 usr; 67 con; 0-9 aty)
% Number of variables : 8062 ( 406 ^;7085 !; 435 ?;8062 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: RCF; Author: Takehiro Naito; Generated: 2015-01-08
% : Answer
% ^ [V_gc_dot_0: ( ''ListOf'' @ $real )] :
% ( V_gc_dot_0
% = ( 'cons/2' @ $real @ -1.0 @ ( 'cons/2' @ $real @ 'k/0' @ ( 'cons/2' @ $real @ 0.0 @ ( 'cons/2' @ $real @ 1.0 @ ( 'nil/0' @ $real ) ) ) ) ) ) )
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf('k/0_type',type,
'k/0': $real ).
thf(p1_qustion,conjecture,
( 'find/1' @ ( 'ListOf' @ $real )
@ ^ [V_gc: 'ListOf' @ $real] :
? [V_c0: $real,V_c1: $real,V_c2: $real] :
( ( V_gc
= ( 'cons/2' @ $real @ V_c0 @ ( 'cons/2' @ $real @ V_c1 @ ( 'cons/2' @ $real @ V_c2 @ ( 'cons/2' @ $real @ 1.0 @ ( 'nil/0' @ $real ) ) ) ) ) )
& ? [V_alpha: $real,V_beta: $real,V_gamma: $real] :
( ( 'are-solutions-of/2' @ ( 'cons/2' @ $real @ V_alpha @ ( 'cons/2' @ $real @ V_beta @ ( 'cons/2' @ $real @ V_gamma @ ( 'nil/0' @ $real ) ) ) ) @ ( 'poly-equation/1' @ ( 'cons/2' @ $real @ ( $uminus @ 1.0 ) @ ( 'cons/2' @ $real @ 0.0 @ ( 'cons/2' @ $real @ ( $uminus @ 'k/0' ) @ ( 'cons/2' @ $real @ 1.0 @ ( 'nil/0' @ $real ) ) ) ) ) ) )
& ( 'are-solutions-of/2' @ ( 'cons/2' @ $real @ ( $product @ V_alpha @ V_beta ) @ ( 'cons/2' @ $real @ ( $product @ V_beta @ V_gamma ) @ ( 'cons/2' @ $real @ ( $product @ V_gamma @ V_alpha ) @ ( 'nil/0' @ $real ) ) ) ) @ ( 'poly-equation/1' @ V_gc ) ) ) ) ) ).
%------------------------------------------------------------------------------