TPTP Problem File: RAL065^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : RAL065^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Real Algebra (Quadratic functions)
% Problem : Tohoku University, 2013, Humanities Course, Problem 1
% Version : [Mat16] axioms : Especial.
% English : Let a be a real number. Answer the following questions: (1) Find
% the range of the value of a such that the quadratic equation x^2
% - 2(a + 1)x + 3 a = 0 has two different real solutions in the
% range of - 1le xle 3. (2) When a moves in the range found in
% (1), find the range of the values of the y coordinate of the
% vertex of the parabola y = x^2 - 2(a + 1)x + 3 a.
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : Univ-Tohoku-2013-Bun-1.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3485 ( 711 unt;1199 typ; 0 def)
% Number of atoms : 7959 (2211 equ; 0 cnn)
% Maximal formula atoms : 41 ( 3 avg)
% Number of connectives : 39651 ( 105 ~; 233 |;1178 &;36009 @)
% (1095 <=>;1031 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4492 ( 375 atm;1213 fun; 965 num;1939 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1211 (1168 usr; 65 con; 0-9 aty)
% Number of variables : 8058 ( 406 ^;7085 !; 431 ?;8058 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: RCF; Author: Takehiro Naito; Generated: 2015-01-08
% : Answer
% ^ [V_a_dot_0: $real] :
% ( ( $lesseq @ ( $quotient @ -3.0 @ 5.0 ) @ V_a_dot_0 )
% & ( $lesseq @ V_a_dot_0 @ 1.0 ) ) )
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf(p1_qustion,conjecture,
( 'find/1' @ $real
@ ^ [V_a: $real] :
? [V_x1: $real,V_x2: $real] :
( ( $lesseq @ ( $uminus @ 1.0 ) @ V_x1 )
& ( $lesseq @ V_x1 @ 3.0 )
& ( $lesseq @ ( $uminus @ 1.0 ) @ V_x2 )
& ( $lesseq @ V_x2 @ 3.0 )
& ( V_x1 != V_x2 )
& ( 0.0
= ( 'funapp/2' @ ( 'poly-fun/1' @ ( 'cons/2' @ $real @ ( $product @ 3.0 @ V_a ) @ ( 'cons/2' @ $real @ ( $uminus @ ( $product @ 2.0 @ ( $sum @ V_a @ 1.0 ) ) ) @ ( 'cons/2' @ $real @ 1.0 @ ( 'nil/0' @ $real ) ) ) ) ) @ V_x1 ) )
& ( 0.0
= ( 'funapp/2' @ ( 'poly-fun/1' @ ( 'cons/2' @ $real @ ( $product @ 3.0 @ V_a ) @ ( 'cons/2' @ $real @ ( $uminus @ ( $product @ 2.0 @ ( $sum @ V_a @ 1.0 ) ) ) @ ( 'cons/2' @ $real @ 1.0 @ ( 'nil/0' @ $real ) ) ) ) ) @ V_x2 ) ) ) ) ).
%------------------------------------------------------------------------------