TPTP Problem File: RAL063^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : RAL063^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Real Algebra (Functions and their graphs)
% Problem : Tohoku University, 1999, Science Course, Problem 3
% Version : [Mat16] axioms : Especial.
% English : Let l be the tangent to the curve y = x^2 at the point (a, a^2).
% Let P and Q be the points on l for which x coordinates are a - 1
% and a + 1, respectively. When a moves in the range of
% -1 =< a =< 1, find the area of the moving range of the line
% segment PQ.
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : Univ-Tohoku-1999-Ri-3.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3485 ( 708 unt;1199 typ; 0 def)
% Number of atoms : 8512 (2212 equ; 0 cnn)
% Maximal formula atoms : 41 ( 3 avg)
% Number of connectives : 39644 ( 104 ~; 233 |;1181 &;36000 @)
% (1095 <=>;1031 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4476 ( 373 atm;1206 fun; 959 num;1938 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1220 (1177 usr; 74 con; 0-9 aty)
% Number of variables : 8062 ( 407 ^;7085 !; 434 ?;8062 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: RCF; Author: Hidenao Iwane; Generated: 2014-01-10
% : Answer
% ^ [V_S_dot_0: $real] :
% ( V_S_dot_0
% = ( $quotient @ 10.0 @ 3.0 ) ) )
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf(p1_qustion,conjecture,
( 'find/1' @ $real
@ ^ [V_S: $real] :
( V_S
= ( '2d.area-of/1'
@ ( '2d.shape-of-cpfun/1'
@ ^ [V_p: '2d.Point'] :
? [V_P: '2d.Point',V_Q: '2d.Point',V_l: '2d.Shape',V_a: $real,V_C: '2d.Shape'] :
( ( V_C
= ( '2d.graph-of/1' @ ( 'poly-fun/1' @ ( 'cons/2' @ $real @ 0.0 @ ( 'cons/2' @ $real @ 0.0 @ ( 'cons/2' @ $real @ 1.0 @ ( 'nil/0' @ $real ) ) ) ) ) ) )
& ( '2d.tangent/3' @ V_l @ V_C @ ( '2d.point/2' @ V_a @ ( '^/2' @ V_a @ 2.0 ) ) )
& ( '2d.line-type/1' @ V_l )
& ( '2d.on/2' @ V_P @ V_l )
& ( '2d.on/2' @ V_Q @ V_l )
& ( ( '2d.x-coord/1' @ V_P )
= ( $sum @ V_a @ ( $uminus @ 1.0 ) ) )
& ( ( '2d.x-coord/1' @ V_Q )
= ( $sum @ V_a @ 1.0 ) )
& ( $lesseq @ -1.0 @ V_a )
& ( $lesseq @ V_a @ 1.0 )
& ( '2d.on/2' @ V_p @ ( '2d.seg/2' @ V_P @ V_Q ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------