TPTP Problem File: RAL062^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : RAL062^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Real Algebra (Complex numbers and complex plane)
% Problem : Tohoku University, 1999, Humanities Course, Problem 4
% Version : [Mat16] axioms : Especial.
% English : Let p be a real number other than 0, and consider the quadratic
% equation x^2 - p x + 5 p = 0. (1) Assume that the solutions
% {alpha} and {beta} of x^2 - p x + 5 p = 0 satisfies {alpha}^5 +
% {beta}^5 = p^5. Find the value of p. (2) Assume that x^2 - p x
% + 5 p = 0 has imaginary solutions, and the fifth power of the
% solutions are real numbers. Find the value of p.
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : Univ-Tohoku-1999-Bun-4.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3485 ( 711 unt;1199 typ; 0 def)
% Number of atoms : 7953 (2210 equ; 0 cnn)
% Maximal formula atoms : 40 ( 3 avg)
% Number of connectives : 39622 ( 105 ~; 233 |;1174 &;35984 @)
% (1095 <=>;1031 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4471 ( 371 atm;1205 fun; 958 num;1937 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1214 (1171 usr; 68 con; 0-9 aty)
% Number of variables : 8058 ( 406 ^;7085 !; 431 ?;8058 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: RCF; Author: Hidenao Iwane; Generated: 2014-01-10
% : Answer
% ^ [V_p_dot_0: $real] : ( V_p_dot_0 = 5.0 ) )
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf(p1_qustion,conjecture,
( 'find/1' @ $real
@ ^ [V_p: $real] :
? [V_a: 'complex.Complex',V_b: 'complex.Complex'] :
( ( 0.0 != V_p )
& ( 'complex.are-solutions-of/2' @ ( 'cons/2' @ 'complex.Complex' @ V_a @ ( 'cons/2' @ 'complex.Complex' @ V_b @ ( 'nil/0' @ 'complex.Complex' ) ) ) @ ( 'complex.quad-equation/3' @ ( $product @ 5.0 @ V_p ) @ ( $uminus @ V_p ) @ 1.0 ) )
& ( ( 'complex.^/2' @ ( 'complex.complex/2' @ V_p @ 0.0 ) @ 5.0 )
= ( 'complex.+/2' @ ( 'complex.^/2' @ V_a @ 5.0 ) @ ( 'complex.^/2' @ V_b @ 5.0 ) ) ) ) ) ).
%------------------------------------------------------------------------------