TPTP Problem File: RAL061^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : RAL061^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Real Algebra (Functions and their graphs)
% Problem : Osaka University, 2005, Humanities Course, Problem 2
% Version : [Mat16] axioms : Especial.
% English : Let f(x)= 2 x^3 + x^2 - 3. (1) Make an increase/decrease table
% of the function f(x) and draw a rough graph of y = f(x). (2)
% Find the range of the real number m such that the straight line
% y = m x intersects with the curve y = f(x) at different three
% points.
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : Univ-Osaka-2005-Bun-2.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3485 ( 711 unt;1199 typ; 0 def)
% Number of atoms : 8040 (2211 equ; 0 cnn)
% Maximal formula atoms : 41 ( 3 avg)
% Number of connectives : 39643 ( 104 ~; 233 |;1178 &;36002 @)
% (1095 <=>;1031 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4468 ( 371 atm;1204 fun; 955 num;1938 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1216 (1172 usr; 70 con; 0-9 aty)
% Number of variables : 8063 ( 407 ^;7085 !; 435 ?;8063 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: RCF; Author: Yiyang Zhan; Generated: 2014-05-02
% : Answer
% ^ [V_m_dot_0: $real] :
% ( $greater @ V_m_dot_0 @ 4.0 ) )
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf(p2_qustion,conjecture,
( 'find/1' @ $real
@ ^ [V_m: $real] :
? [V_f: 'R2R',V_l: '2d.Shape',V_C: '2d.Shape',V_p: '2d.Point',V_q: '2d.Point',V_r: '2d.Point'] :
( ( V_f
= ( 'poly-fun/1' @ ( 'cons/2' @ $real @ -3.0 @ ( 'cons/2' @ $real @ 0.0 @ ( 'cons/2' @ $real @ 1.0 @ ( 'cons/2' @ $real @ 2.0 @ ( 'nil/0' @ $real ) ) ) ) ) ) )
& ( V_l
= ( '2d.graph-of/1'
@ ( 'fun/1'
@ ^ [V_x: $real] : ( $product @ V_m @ V_x ) ) ) )
& ( V_C
= ( '2d.graph-of/1' @ V_f ) )
& ( 'pairwise-distinct/1' @ '2d.Point' @ ( 'cons/2' @ '2d.Point' @ V_p @ ( 'cons/2' @ '2d.Point' @ V_q @ ( 'cons/2' @ '2d.Point' @ V_r @ ( 'nil/0' @ '2d.Point' ) ) ) ) )
& ( '2d.on/2' @ V_p @ ( '2d.intersection/2' @ V_l @ V_C ) )
& ( '2d.on/2' @ V_q @ ( '2d.intersection/2' @ V_l @ V_C ) )
& ( '2d.on/2' @ V_r @ ( '2d.intersection/2' @ V_l @ V_C ) ) ) ) ).
%------------------------------------------------------------------------------