TPTP Problem File: RAL060^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : RAL060^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Real Algebra (Algebraic curves)
% Problem : Osaka University, 2003, Science Course, Problem 5
% Version : [Mat16] axioms : Especial.
% English : (1) Consider an ellipse on a plane that has principal axes
% (major and minor axes) parallel to the coordinate axes and is in
% contact with both the x and y axes. Let a be the x coordinate of
% the center of the ellipse. Find the range of the value of a such
% that there exists such an ellipse that passes through the point
% A(1, 2), where circles are regarded as special cases of ellipses.
% (2) For a that gives just two ellipses satisfying the description
% in (1), let B and C be the centers of the 2 ellipses and let the
% function S(a) be the area of triangle ABC. Then, draw the graph of
% S(a).
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : Univ-Osaka-2003-Ri-5.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3486 ( 727 unt;1200 typ; 0 def)
% Number of atoms : 6657 (2210 equ; 0 cnn)
% Maximal formula atoms : 20 ( 2 avg)
% Number of connectives : 39627 ( 104 ~; 233 |;1176 &;35988 @)
% (1095 <=>;1031 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4480 ( 371 atm;1209 fun; 958 num;1942 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1215 (1172 usr; 69 con; 0-9 aty)
% Number of variables : 8063 ( 408 ^;7085 !; 434 ?;8063 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: RCF; Author: Tomoya Ishii; Generated: 2014-05-14
% : Answer
% ^ [V_a_dot_0: $real] :
% ( $greatereq @ V_a_dot_0 @ ( $quotient @ 1.0 @ 2.0 ) ) )
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf('a/0_type',type,
'a/0': $real ).
thf(p1_qustion,conjecture,
( 'find/1' @ $real
@ ^ [V_a: $real] :
? [V_A: '2d.Point',V_C: '2d.Shape',V_b: $real,V_s: $real,V_t: $real] :
( ( V_A
= ( '2d.point/2' @ 1.0 @ 2.0 ) )
& ( V_C
= ( '2d.graph-of-implicit-function/1'
@ ^ [V_x: $real,V_y: $real] : ( $sum @ ( $quotient @ ( '^/2' @ ( $difference @ V_x @ V_a ) @ 2.0 ) @ ( '^/2' @ V_s @ 2.0 ) ) @ ( $sum @ ( $quotient @ ( '^/2' @ ( $difference @ V_y @ V_b ) @ 2.0 ) @ ( '^/2' @ V_t @ 2.0 ) ) @ -1.0 ) ) ) )
& ( '2d.tangent/2' @ V_C @ '2d.x-axis/0' )
& ( '2d.tangent/2' @ V_C @ '2d.y-axis/0' )
& ( '2d.on/2' @ V_A @ V_C ) ) ) ).
%------------------------------------------------------------------------------