TPTP Problem File: RAL059^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : RAL059^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Real Algebra (Quadratic functions)
% Problem : Osaka University, 2001, Humanities Course, Problem 1
% Version : [Mat16] axioms : Especial.
% English : Let R be the rectangle whose vertices are at the points A(1, 0),
% B(2, 0), C(2, 8), and D(1, 8) on the coordinate plane. Meanwhile,
% let T(t) be the triangle whose vertices are at the origin O(0, 0),
% point E(4, 0), and point P(t, 8 t-2t^2), where 0 < t < 4.
% (1) Find the area f(t) of the region common to the inside of R and
% the inside of T(t). (2) Assuming that t moves in the range of
% 0 < t < 4, find the maximum value of f(t) and the value of t that
% gives the maximum value.
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : Univ-Osaka-2001-Bun-1.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3486 ( 727 unt;1200 typ; 0 def)
% Number of atoms : 7054 (2216 equ; 0 cnn)
% Maximal formula atoms : 22 ( 3 avg)
% Number of connectives : 39639 ( 104 ~; 233 |;1181 &;35995 @)
% (1095 <=>;1031 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4482 ( 373 atm;1206 fun; 966 num;1937 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1216 (1173 usr; 70 con; 0-9 aty)
% Number of variables : 8063 ( 406 ^;7085 !; 436 ?;8063 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: RCF; Author: Tomoya Ishii; Generated: 2014-05-14
% : Answer
% ^ [V_f_dot_0: $real] :
% ( ( ( $less @ 0.0 @ 't/0' )
% & ( $less @ 't/0' @ 1.0 )
% & ( V_f_dot_0
% = ( $product @ 5.0 @ 't/0' ) ) )
% | ( ( $lesseq @ 1.0 @ 't/0' )
% & ( $less @ 't/0' @ 2.0 )
% & ( V_f_dot_0
% = ( $sum @ ( $uminus @ ( $product @ 4.0 @ ( '^/2' @ 't/0' @ 2.0 ) ) ) @ ( $sum @ ( $product @ 13.0 @ 't/0' ) @ ( $uminus @ 4.0 ) ) ) ) )
% | ( ( $lesseq @ 2.0 @ 't/0' )
% & ( $less @ 't/0' @ 4.0 )
% & ( V_f_dot_0
% = ( $difference @ 12.0 @ ( $product @ 3.0 @ 't/0' ) ) ) ) ) )
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf('t/0_type',type,
't/0': $real ).
thf(p1_qustion,conjecture,
( 'find/1' @ $real
@ ^ [V_f: $real] :
? [V_A: '2d.Point',V_B: '2d.Point',V_C: '2d.Point',V_D: '2d.Point',V_R: '2d.Shape',V_E: '2d.Point',V_T: '2d.Shape'] :
( ( V_A
= ( '2d.point/2' @ 1.0 @ 0.0 ) )
& ( V_B
= ( '2d.point/2' @ 2.0 @ 0.0 ) )
& ( V_C
= ( '2d.point/2' @ 2.0 @ 8.0 ) )
& ( V_D
= ( '2d.point/2' @ 1.0 @ 8.0 ) )
& ( V_R
= ( '2d.square/4' @ V_A @ V_B @ V_C @ V_D ) )
& ( V_E
= ( '2d.point/2' @ 4.0 @ 0.0 ) )
& ( $less @ 0.0 @ 't/0' )
& ( $less @ 't/0' @ 4.0 )
& ( V_T
= ( '2d.triangle/3' @ '2d.origin/0' @ V_E @ ( '2d.point/2' @ 't/0' @ ( $difference @ ( $product @ 8.0 @ 't/0' ) @ ( $product @ 2.0 @ ( '^/2' @ 't/0' @ 2.0 ) ) ) ) ) )
& ( V_f
= ( '2d.area-of/1' @ ( '2d.intersection/2' @ ( '2d.shape-inside-of/1' @ V_R ) @ ( '2d.shape-inside-of/1' @ V_T ) ) ) ) ) ) ).
%------------------------------------------------------------------------------