TPTP Problem File: RAL056^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : RAL056^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Real Algebra (Quadratic functions)
% Problem : Kyushu University, 2003, Humanities Course, Problem 3
% Version : [Mat16] axioms : Especial.
% English : Let a, b, and c be real numbers, and assume that a > 0. Define
% f(x)= a x^2 + b x + c. For the real number p, let g(p) be the
% maximum value of the function p x - f(x). (1) When the functions
% y = f(x) and y = g(x) match each other, find the value of f(x).
% (2) For the real number x, let h(x) be the maximum value of the
% function of p: x p - g(p). Find the value of h(x). (3) Prove that
% the necessary and sufficient condition for the straight line
% y = p x + q to be in contact with the graph of y = f(x) at the
% point (t, f(t)) is g(p)= p t - f(t) and q = - g(p).
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : Univ-Kyushu-2003-Bun-3.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3489 ( 710 unt;1203 typ; 0 def)
% Number of atoms : 8006 (2212 equ; 0 cnn)
% Maximal formula atoms : 41 ( 3 avg)
% Number of connectives : 39635 ( 104 ~; 233 |;1175 &;35996 @)
% (1095 <=>;1032 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4472 ( 372 atm;1205 fun; 952 num;1943 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1218 (1175 usr; 72 con; 0-9 aty)
% Number of variables : 8064 ( 407 ^;7087 !; 434 ?;8064 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: RCF; Author: Yiyang Zhan; Generated: 2014-05-23
% : Answer
% ^ [V_abc_dot_0: ( ''ListOf'' @ $real )] :
% ( V_abc_dot_0
% = ( 'cons/2' @ $real @ ( $quotient @ 1.0 @ 2.0 ) @ ( 'cons/2' @ $real @ 0.0 @ ( 'cons/2' @ $real @ 0.0 @ ( 'nil/0' @ $real ) ) ) ) ) )
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf('a/0_type',type,
'a/0': $real ).
thf('b/0_type',type,
'b/0': $real ).
thf('c/0_type',type,
'c/0': $real ).
thf('x/0_type',type,
'x/0': $real ).
thf(p1_m_qustion,conjecture,
( 'find/1' @ ( 'ListOf' @ $real )
@ ^ [V_abc: 'ListOf' @ $real] :
? [V_a: $real,V_b: $real,V_c: $real,V_f: 'R2R'] :
( ( $less @ 0.0 @ V_a )
& ( V_f
= ( 'poly-fun/1' @ ( 'cons/2' @ $real @ V_c @ ( 'cons/2' @ $real @ V_b @ ( 'cons/2' @ $real @ V_a @ ( 'nil/0' @ $real ) ) ) ) ) )
& ! [V_p: $real,V_gp: $real] :
( ( 'maximum/2'
@ ( 'set-by-def/1' @ $real
@ ^ [V_v: $real] :
? [V_x: $real] :
( V_v
= ( $difference @ ( $product @ V_p @ V_x ) @ ( 'funapp/2' @ V_f @ V_x ) ) ) )
@ V_gp )
=> ( ( 'funapp/2' @ V_f @ V_p )
= V_gp ) )
& ( V_abc
= ( 'cons/2' @ $real @ V_a @ ( 'cons/2' @ $real @ V_b @ ( 'cons/2' @ $real @ V_c @ ( 'nil/0' @ $real ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------