TPTP Problem File: RAL053^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : RAL053^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Real Algebra (Functions and their graphs)
% Problem : Kyoto University, 1999, Humanities Course, Problem 2
% Version : [Mat16] axioms : Especial.
% English : When the points P and Q move on the parabola y=x^2, and the area
% of the region enclosed by this parabola and the line segment PQ
% is always 1, find the equation of the figure formed by the
% middle point R of PQ.
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : Univ-Kyoto-1999-Bun-2.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3485 ( 711 unt;1199 typ; 0 def)
% Number of atoms : 8210 (2212 equ; 0 cnn)
% Maximal formula atoms : 41 ( 3 avg)
% Number of connectives : 39629 ( 105 ~; 233 |;1177 &;35988 @)
% (1095 <=>;1031 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4465 ( 371 atm;1203 fun; 955 num;1936 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1216 (1173 usr; 70 con; 0-9 aty)
% Number of variables : 8059 ( 406 ^;7085 !; 432 ?;8059 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: RCF; Author: Hidenao Iwane; Generated: 2014-01-13
% : Answer
% ^ [V_R_dot_0: '2d.Point'] :
% ( ( '2d.y-coord/1' @ V_R_dot_0 )
% = ( $sum @ ( '^/2' @ ( '2d.x-coord/1' @ V_R_dot_0 ) @ 2.0 ) @ ( $quotient @ ( '^/2' @ 36.0 @ ( $quotient @ 1.0 @ 3.0 ) ) @ 4.0 ) ) ) )
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf(p_qustion,conjecture,
( 'find/1' @ '2d.Point'
@ ^ [V_R: '2d.Point'] :
? [V_P: '2d.Point',V_Q: '2d.Point',V_C: '2d.Shape'] :
( ( V_C
= ( '2d.graph-of/1' @ ( 'poly-fun/1' @ ( 'cons/2' @ $real @ 0.0 @ ( 'cons/2' @ $real @ 0.0 @ ( 'cons/2' @ $real @ 1.0 @ ( 'nil/0' @ $real ) ) ) ) ) ) )
& ( '2d.on/2' @ V_P @ V_C )
& ( '2d.on/2' @ V_Q @ V_C )
& ( V_P != V_Q )
& ( 1.0
= ( '2d.area-of/1' @ ( '2d.shape-enclosed-by/1' @ ( 'cons/2' @ '2d.Shape' @ ( '2d.seg/2' @ V_P @ V_Q ) @ ( 'cons/2' @ '2d.Shape' @ V_C @ ( 'nil/0' @ '2d.Shape' ) ) ) ) ) )
& ( V_R
= ( '2d.midpoint-of/2' @ V_P @ V_Q ) ) ) ) ).
%------------------------------------------------------------------------------