TPTP Problem File: RAL052^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : RAL052^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Real Algebra (Algebraic curves)
% Problem : Hokkaido University, 2007, Science Course, Problem 5
% Version : [Mat16] axioms : Especial.
% English : Consider the ellipse C_1 :x^2/{alpha}^2 +y^2/{beta}^2 = 1 and
% hyperbola C_2 :x^2/a^2 -y^2/b^2 = 1. If C_1 and C_2 have the same
% focuses, prove that the tangents of C_1 and C_2 intersect with
% each other perpendicularly at the intersection of the two.
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : Univ-Hokkaido-2007-Ri-5.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3485 ( 728 unt;1199 typ; 0 def)
% Number of atoms : 6575 (2215 equ; 0 cnn)
% Maximal formula atoms : 20 ( 2 avg)
% Number of connectives : 39668 ( 109 ~; 233 |;1187 &;36012 @)
% (1095 <=>;1032 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4491 ( 371 atm;1211 fun; 965 num;1944 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1213 (1170 usr; 67 con; 0-9 aty)
% Number of variables : 8070 ( 409 ^;7096 !; 429 ?;8070 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: RCF; Author: Ukyo Suzuki; Generated: 2014-09-27
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf(p1,conjecture,
! [V_alpha: $real,V_beta: $real,V_a: $real,V_b: $real,V_C1: '2d.Shape',V_C2: '2d.Shape',V_p1: '2d.Point',V_p2: '2d.Point',V_p: '2d.Point',V_l: '2d.Shape',V_k: '2d.Shape'] :
( ( ( V_a != 0.0 )
& ( V_b != 0.0 )
& ( V_alpha != 0.0 )
& ( V_beta != 0.0 )
& ( V_C1
= ( '2d.graph-of-implicit-function/1'
@ ^ [V_x_dot_0: $real,V_y_dot_0: $real] : ( $difference @ ( $sum @ ( $quotient @ ( '^/2' @ V_x_dot_0 @ 2.0 ) @ ( '^/2' @ V_alpha @ 2.0 ) ) @ ( $quotient @ ( '^/2' @ V_y_dot_0 @ 2.0 ) @ ( '^/2' @ V_beta @ 2.0 ) ) ) @ 1.0 ) ) )
& ( V_C2
= ( '2d.graph-of-implicit-function/1'
@ ^ [V_x: $real,V_y: $real] : ( $difference @ ( $difference @ ( $quotient @ ( '^/2' @ V_x @ 2.0 ) @ ( '^/2' @ V_a @ 2.0 ) ) @ ( $quotient @ ( '^/2' @ V_y @ 2.0 ) @ ( '^/2' @ V_b @ 2.0 ) ) ) @ 1.0 ) ) )
& ( V_p1 != V_p2 )
& ( '2d.is-focus-of/2' @ V_p1 @ V_C1 )
& ( '2d.is-focus-of/2' @ V_p1 @ V_C2 )
& ( '2d.is-focus-of/2' @ V_p2 @ V_C1 )
& ( '2d.is-focus-of/2' @ V_p2 @ V_C2 )
& ( '2d.intersect/3' @ V_C1 @ V_C2 @ V_p )
& ( '2d.line-type/1' @ V_l )
& ( '2d.tangent/3' @ V_C1 @ V_l @ V_p )
& ( '2d.line-type/1' @ V_k )
& ( '2d.tangent/3' @ V_C2 @ V_k @ V_p ) )
=> ( '2d.perpendicular/2' @ V_l @ V_k ) ) ).
%------------------------------------------------------------------------------