TPTP Problem File: RAL050^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : RAL050^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Real Algebra (Functions and their graphs)
% Problem : Hokkaido University, 1999, Humanities Course, Problem 2
% Version : [Mat16] axioms : Especial.
% English :
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : Univ-Hokkaido-1999-Bun-2.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3486 ( 711 unt;1200 typ; 0 def)
% Number of atoms : 8509 (2211 equ; 0 cnn)
% Maximal formula atoms : 41 ( 3 avg)
% Number of connectives : 39651 ( 104 ~; 233 |;1181 &;36007 @)
% (1095 <=>;1031 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4477 ( 373 atm;1207 fun; 961 num;1936 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1219 (1176 usr; 73 con; 0-9 aty)
% Number of variables : 8060 ( 406 ^;7085 !; 433 ?;8060 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: RCF; Author: Hidenao Iwane; Generated: 2014-01-09
% : Answer
% ^ [V_B_dot_0: '2d.Point'] :
% ( ( $less @ 0.0 @ 'a/0' )
% & ( $less @ 'a/0' @ 1.0 )
% & ( V_B_dot_0
% = ( '2d.point/2' @ 'a/0' @ 0.0 ) ) ) )
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf('a/0_type',type,
'a/0': $real ).
thf(p1_simpl_qustion,conjecture,
( 'find/1' @ '2d.Point'
@ ^ [V_B: '2d.Point'] :
? [V_A: '2d.Point',V_F: '2d.Shape',V_G: '2d.Shape',V_O: '2d.Point'] :
( ( $less @ 0.0 @ 'a/0' )
& ( $less @ 'a/0' @ 1.0 )
& ( V_F
= ( '2d.graph-of/1' @ ( 'poly-fun/1' @ ( 'cons/2' @ $real @ 1.0 @ ( 'cons/2' @ $real @ 0.0 @ ( 'cons/2' @ $real @ ( $uminus @ 1.0 ) @ ( 'nil/0' @ $real ) ) ) ) ) ) )
& ( V_G
= ( '2d.graph-of/1' @ ( 'poly-fun/1' @ ( 'cons/2' @ $real @ 0.0 @ ( 'cons/2' @ $real @ 0.0 @ ( 'cons/2' @ $real @ ( $sum @ ( $quotient @ 1.0 @ ( '^/2' @ 'a/0' @ 2.0 ) ) @ ( $uminus @ 1.0 ) ) @ ( 'nil/0' @ $real ) ) ) ) ) ) )
& ( '2d.on/2' @ V_A @ V_F )
& ( '2d.on/2' @ V_A @ V_G )
& ( '2d.on/2' @ V_A @ '2d.1st-quadrant/0' )
& ( '2d.on/2' @ V_B @ '2d.x-axis/0' )
& ( '2d.perpendicular/2' @ ( '2d.line/2' @ V_A @ V_B ) @ '2d.x-axis/0' )
& ( V_O = '2d.origin/0' ) ) ) ).
%------------------------------------------------------------------------------