TPTP Problem File: RAL049^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : RAL049^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Real Algebra (Computation of expressions)
% Problem : International Mathematical Olympiad, 2014, Problem 1
% Version : [Mat16] axioms : Especial.
% English : Let a_0 < a_1 < a_2 < ... be an infinite sequence of positive
% integers. Prove that there exists a unique integer n geq 1 such
% that a_n < a_0 + a_1 + ... + a_n/n leq a_{n+1}.
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : IMO-2014-1.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3485 ( 728 unt;1199 typ; 0 def)
% Number of atoms : 6440 (2209 equ; 0 cnn)
% Maximal formula atoms : 23 ( 2 avg)
% Number of connectives : 39683 ( 104 ~; 233 |;1178 &;36038 @)
% (1095 <=>;1035 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4506 ( 381 atm;1222 fun; 963 num;1940 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2409 (2409 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1209 (1166 usr; 63 con; 0-9 aty)
% Number of variables : 8060 ( 405 ^;7089 !; 430 ?;8060 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: ZF; Score: 7; Author: Jumma Kudo;
% Generated: 2014-10-10
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf(p,conjecture,
! [V_a: $int > $int] :
( ( ! [V_n_dot_0: $int] :
( ( $lesseq @ 0 @ V_n_dot_0 )
=> ( $lesseq @ 1 @ ( V_a @ V_n_dot_0 ) ) )
& ! [V_n: $int] :
( ( $lesseq @ 0 @ V_n )
=> ( $lesseq @ ( V_a @ V_n ) @ ( V_a @ ( $sum @ V_n @ 1 ) ) ) ) )
=> ? [V_n_dot_1: $int] :
( ( $lesseq @ 1 @ V_n_dot_1 )
& ( $less @ ( $to_rat @ ( V_a @ V_n_dot_1 ) ) @ ( $quotient @ ( $to_rat @ ( 'int.sum/1' @ ( 'map/2' @ $int @ $int @ V_a @ ( 'int.iota/2' @ 0 @ V_n_dot_1 ) ) ) ) @ ( $to_rat @ V_n_dot_1 ) ) )
& ( $lesseq @ ( $quotient @ ( $to_rat @ ( 'int.sum/1' @ ( 'map/2' @ $int @ $int @ V_a @ ( 'int.iota/2' @ 0 @ V_n_dot_1 ) ) ) ) @ ( $to_rat @ V_n_dot_1 ) ) @ ( $to_rat @ ( V_a @ ( $sum @ V_n_dot_1 @ 1 ) ) ) )
& ! [V_m: $int] :
( ( ( $lesseq @ 1 @ V_m )
& ( $less @ ( $to_rat @ ( V_a @ V_m ) ) @ ( $quotient @ ( $to_rat @ ( 'int.sum/1' @ ( 'map/2' @ $int @ $int @ V_a @ ( 'int.iota/2' @ 0 @ V_m ) ) ) ) @ ( $to_rat @ V_m ) ) )
& ( $lesseq @ ( $quotient @ ( $to_rat @ ( 'int.sum/1' @ ( 'map/2' @ $int @ $int @ V_a @ ( 'int.iota/2' @ 0 @ V_m ) ) ) ) @ ( $to_rat @ V_m ) ) @ ( $to_rat @ ( V_a @ ( $sum @ V_m @ 1 ) ) ) ) )
=> ( V_n_dot_1 = V_m ) ) ) ) ).
%------------------------------------------------------------------------------