TPTP Problem File: RAL048^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : RAL048^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Real Algebra (Functional equations)
% Problem : International Mathematical Olympiad, 2013, Problem 5
% Version : [Mat16] axioms : Especial.
% English : Let Q_{>0} be the set of positive rational numbers. Let f :
% Q_{>0} rightarrow R be a function satisfying the following three
% conditions: (i) for all x, y in Q_{>0}, we have f(x)f(y) geq
% f(xy); (ii) for all x, y in Q_{>0}, we have f(x + y) geq f(x) +
% f(y); (iii) there exists a rational number a > 1 such that f(a)
% = a. Prove that f(x) = x for all x in Q_{>0}.
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : IMO-2013-5.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3485 ( 728 unt;1199 typ; 0 def)
% Number of atoms : 6456 (2210 equ; 0 cnn)
% Maximal formula atoms : 20 ( 2 avg)
% Number of connectives : 39643 ( 104 ~; 233 |;1180 &;35997 @)
% (1095 <=>;1034 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4483 ( 381 atm;1207 fun; 955 num;1940 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1207 (1164 usr; 61 con; 0-9 aty)
% Number of variables : 8060 ( 405 ^;7089 !; 430 ?;8060 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: ZF; Score: 7; Author: Yiyang Zhan;
% Generated: 2014-10-24
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf(p,conjecture,
! [V_f: 'R2R'] :
( ( ! [V_x: $real,V_y: $real] :
( ( ( $is_rat @ V_x )
& ( $is_rat @ V_y )
& ( $less @ 0.0 @ V_x )
& ( $less @ 0.0 @ V_y ) )
=> ( ( $greatereq @ ( $product @ ( 'funapp/2' @ V_f @ V_x ) @ ( 'funapp/2' @ V_f @ V_y ) ) @ ( 'funapp/2' @ V_f @ ( $product @ V_x @ V_y ) ) )
& ( $greatereq @ ( 'funapp/2' @ V_f @ ( $sum @ V_x @ V_y ) ) @ ( $sum @ ( 'funapp/2' @ V_f @ V_x ) @ ( 'funapp/2' @ V_f @ V_y ) ) ) ) )
& ? [V_a: $real] :
( ( $is_rat @ V_a )
& ( $greater @ V_a @ 1.0 )
& ( ( 'funapp/2' @ V_f @ V_a )
= V_a ) ) )
=> ! [V_x_dot_0: $real] :
( ( ( $is_rat @ V_x_dot_0 )
& ( $less @ 0.0 @ V_x_dot_0 ) )
=> ( ( 'funapp/2' @ V_f @ V_x_dot_0 )
= V_x_dot_0 ) ) ) ).
%------------------------------------------------------------------------------