TPTP Problem File: RAL047^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : RAL047^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Real Algebra
% Problem : International Mathematical Olympiad, 2012, Problem 4
% Version : [Mat16] axioms : Especial.
% English : Find all functions f : Z -> Z such that, for all integers a, b,
% c that satisfy a + b + c = 0, the following equality holds:
% f(a)^2 + f(b)^2 + f(c)^2 = 2 f(a) f(b) + 2 f(b) f(c) + 2 f(c)
% f(a). (Here Z denotes the set of integers.)
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : IMO-2012-4.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3485 ( 728 unt;1199 typ; 0 def)
% Number of atoms : 6404 (2210 equ; 0 cnn)
% Maximal formula atoms : 20 ( 2 avg)
% Number of connectives : 39634 ( 104 ~; 233 |;1172 &;35998 @)
% (1095 <=>;1032 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4483 ( 371 atm;1215 fun; 958 num;1939 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2410 (2410 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1208 (1165 usr; 62 con; 0-9 aty)
% Number of variables : 8059 ( 406 ^;7088 !; 429 ?;8059 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: ZF; Score: 7; Author: Jumma Kudo;
% Generated: 2014-10-17
% : Answer
% ^ [V_f_dot_0: ( $int > $int )] :
% ? [V_k: $int] :
% ( ( V_k != 0 )
% & ( ( V_f_dot_0
% = ( ^ [V_x_dot_2: $int] : 0 ) )
% | ( V_f_dot_0
% = ( ^ [V_x_dot_1: $int] :
% ( 'if/3' @ $int
% @ ^ [V___dot_2: 'Unit'] :
% ( ( $remainder_f @ V_x_dot_1 @ 2 )
% = 0 )
% @ 0
% @ V_k ) ) )
% | ( V_f_dot_0
% = ( ^ [V_x_dot_0: $int] :
% ( 'if/3' @ $int
% @ ^ [V___dot_1: 'Unit'] :
% ( ( $remainder_f @ V_x_dot_0 @ 4 )
% = 0 )
% @ 0
% @ ( 'if/3' @ $int
% @ ^ [V___dot_0: 'Unit'] :
% ( ( $remainder_f @ V_x_dot_0 @ 4 )
% = 1 )
% @ V_k
% @ ( 'if/3' @ $int
% @ ^ [V__: 'Unit'] :
% ( ( $remainder_f @ V_x_dot_0 @ 4 )
% = 2 )
% @ ( $product @ 4 @ V_k )
% @ V_k ) ) ) ) )
% | ( V_f_dot_0
% = ( ^ [V_x: $int] :
% ( $product @ V_k @ ( 'int.^/2' @ V_x @ 2 ) ) ) ) ) ) )
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf(p_qustion,conjecture,
( 'find/1' @ ( $int > $int )
@ ^ [V_f: $int > $int] :
! [V_a: $int,V_b: $int,V_c: $int] :
( ( ( $sum @ V_a @ ( $sum @ V_b @ V_c ) )
= 1 )
=> ( ( $sum @ ( 'int.^/2' @ ( V_f @ V_a ) @ 2 ) @ ( $sum @ ( 'int.^/2' @ ( V_f @ V_b ) @ 2 ) @ ( 'int.^/2' @ ( V_f @ V_c ) @ 2 ) ) )
= ( $sum @ ( $product @ 2 @ ( $product @ ( V_f @ V_b ) @ ( V_f @ V_c ) ) ) @ ( $sum @ ( $product @ 2 @ ( $product @ ( V_f @ V_a ) @ ( V_f @ V_b ) ) ) @ ( $product @ 2 @ ( $product @ ( V_f @ V_a ) @ ( V_f @ V_c ) ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------