TPTP Problem File: RAL046^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : RAL046^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Real Algebra (Inequalities)
% Problem : International Mathematical Olympiad, 2012, Problem 2
% Version : [Mat16] axioms : Especial.
% English : Let n >= 3 be an integer, and let a2, a3, ..., a_n be positive
% real numbers such that a2 a3 ... a_n = 1. Prove that (1 + a2)^2
% (1 + a3)^2 ... (1 + a_n)^n > n^n.
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : IMO-2012-2.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3485 ( 728 unt;1199 typ; 0 def)
% Number of atoms : 6635 (2209 equ; 0 cnn)
% Maximal formula atoms : 20 ( 2 avg)
% Number of connectives : 39631 ( 104 ~; 233 |;1175 &;35991 @)
% (1095 <=>;1033 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4479 ( 376 atm;1205 fun; 959 num;1939 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1212 (1169 usr; 66 con; 0-9 aty)
% Number of variables : 8059 ( 406 ^;7088 !; 429 ?;8059 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: RCF+PA; Score: 7; Author: Jumma Kudo;
% Generated: 2014-10-17
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf(p,conjecture,
! [V_n: $int,V_a: 'seq.Seq'] :
( ( ( $greatereq @ V_n @ 3 )
& ! [V_k: $int] :
( ( ( $lesseq @ 2 @ V_k )
& ( $lesseq @ V_k @ V_n ) )
=> ( $less @ 0.0 @ ( 'seq.nth-term-of/2' @ V_a @ ( 'seq.index/1' @ V_k ) ) ) )
& ( ( 'seq.prod-from-to/3' @ V_a @ ( 'seq.index/1' @ 2 ) @ ( 'seq.index/1' @ V_n ) )
= 1.0 ) )
=> ( $greater
@ ( 'seq.prod-from-to/3'
@ ( 'seq.seq/1'
@ ^ [V_k_dot_0: $int] : ( '^/2' @ ( $sum @ 1.0 @ ( 'seq.nth-term-of/2' @ V_a @ ( 'seq.index/1' @ V_k_dot_0 ) ) ) @ 2.0 ) )
@ ( 'seq.index/1' @ 2 )
@ ( 'seq.index/1' @ V_n ) )
@ ( $to_real @ ( 'int.^/2' @ V_n @ V_n ) ) ) ) ).
%------------------------------------------------------------------------------