TPTP Problem File: RAL045^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : RAL045^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Real Algebra
% Problem : International Mathematical Olympiad, 2011, Problem 3
% Version : [Mat16] axioms : Especial.
% English : Let f : R -> R be a real-valued function defined on the set of
% real numbers that satisfies f(x + y) <= yf(x) + f(f(x)) for all
% real numbers x and y. Prove that f(x) = 0 for all x <= 0.
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : IMO-2011-3.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3485 ( 728 unt;1199 typ; 0 def)
% Number of atoms : 6444 (2209 equ; 0 cnn)
% Maximal formula atoms : 20 ( 2 avg)
% Number of connectives : 39614 ( 104 ~; 233 |;1172 &;35977 @)
% (1095 <=>;1033 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4471 ( 373 atm;1206 fun; 953 num;1939 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1207 (1164 usr; 61 con; 0-9 aty)
% Number of variables : 8059 ( 405 ^;7089 !; 429 ?;8059 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: ZF; Score: 7; Author: Yiyang Zhan;
% Generated: 2014-10-24
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf(p,conjecture,
! [V_f: 'R2R'] :
( ! [V_x: $real,V_y: $real] : ( $lesseq @ ( 'funapp/2' @ V_f @ ( $sum @ V_x @ V_y ) ) @ ( $sum @ ( $product @ V_y @ ( 'funapp/2' @ V_f @ V_x ) ) @ ( 'funapp/2' @ V_f @ ( 'funapp/2' @ V_f @ V_x ) ) ) )
=> ! [V_x_dot_0: $real] :
( ( $lesseq @ V_x_dot_0 @ 0.0 )
=> ( ( 'funapp/2' @ V_f @ V_x_dot_0 )
= 0.0 ) ) ) ).
%------------------------------------------------------------------------------