TPTP Problem File: RAL044^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : RAL044^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Real Algebra (Functional equations)
% Problem : International Mathematical Olympiad, 2010, Problem 1
% Version : [Mat16] axioms : Especial.
% English : Determine all functions f : R -> R such that the equality
% f(floor(x) y) = f(x) floor(f(y)) holds for all x, y in R. (Here
% floor(z) denotes the greatest integer less than or equal to z.)
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : IMO-2010-1.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3485 ( 728 unt;1199 typ; 0 def)
% Number of atoms : 6386 (2209 equ; 0 cnn)
% Maximal formula atoms : 20 ( 2 avg)
% Number of connectives : 39603 ( 104 ~; 233 |;1172 &;35968 @)
% (1095 <=>;1031 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4467 ( 371 atm;1207 fun; 951 num;1938 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2410 (2410 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1208 (1164 usr; 61 con; 0-9 aty)
% Number of variables : 8058 ( 406 ^;7087 !; 429 ?;8058 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: ZF; Score: 7; Author: Jumma Kudo;
% Generated: 2014-10-21
% : Answer
% ^ [V_f_dot_0: ( $real > $real )] :
% ? [V_a: $real] :
% ( ( $lesseq @ 1.0 @ V_a )
% & ( $less @ V_a @ 2.0 )
% & ( ( V_f_dot_0
% = ( ^ [V_x_dot_1: $real] : 0.0 ) )
% | ( V_f_dot_0
% = ( ^ [V_x_dot_0: $real] : V_a ) ) ) ) )
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf(p_qustion,conjecture,
( 'find/1' @ ( $real > $real )
@ ^ [V_f: $real > $real] :
! [V_x: $real,V_y: $real] :
( ( V_f @ ( $product @ ( $floor @ V_x ) @ V_y ) )
= ( $product @ ( V_f @ V_x ) @ ( $floor @ ( V_f @ V_y ) ) ) ) ) ).
%------------------------------------------------------------------------------