TPTP Problem File: RAL042^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : RAL042^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Real Algebra (Functional equations)
% Problem : International Mathematical Olympiad, 2008, Problem 4
% Version : [Mat16] axioms : Especial.
% English : Find all functions f : (0, infinity) -> (0, infinity) (so, f is
% a function from the positive real numbers to the positive real
% numbers) such that (f(w)^2 + f(x)^2) / (f(y^2) + f(z^2)) = (w^2
% + x^2)/(y^2 + z^2) for all positive real numbers w, x, y, z,
% satisfying wx = yz.
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : IMO-2008-4.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3485 ( 728 unt;1199 typ; 0 def)
% Number of atoms : 6560 (2211 equ; 0 cnn)
% Maximal formula atoms : 20 ( 2 avg)
% Number of connectives : 39655 ( 104 ~; 233 |;1178 &;36011 @)
% (1095 <=>;1034 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4498 ( 378 atm;1211 fun; 967 num;1942 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2410 (2410 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1208 (1165 usr; 62 con; 0-9 aty)
% Number of variables : 8062 ( 406 ^;7091 !; 429 ?;8062 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: ZF; Score: 7; Author: Jumma Kudo;
% Generated: 2014-10-22
% : Answer
% ^ [V_f_dot_0: ( $real > $real )] :
% ( ( V_f_dot_0
% = ( ^ [V_x_dot_3: $real] :
% ( 'if/3' @ $real
% @ ^ [V___dot_0: 'Unit'] :
% ( $less @ V_x_dot_3 @ 0.0 )
% @ 0.0
% @ V_x_dot_3 ) ) )
% | ( V_f_dot_0
% = ( ^ [V_x_dot_2: $real] :
% ( 'if/3' @ $real
% @ ^ [V__: 'Unit'] :
% ( $less @ V_x_dot_2 @ 0.0 )
% @ 0.0
% @ ( $quotient @ 1.0 @ V_x_dot_2 ) ) ) ) ) )
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf(p_qustion,conjecture,
( 'find/1' @ ( $real > $real )
@ ^ [V_f: $real > $real] :
( ! [V_x_dot_1: $real] :
( ( $lesseq @ V_x_dot_1 @ 0.0 )
=> ( ( V_f @ V_x_dot_1 )
= 0.0 ) )
& ! [V_x_dot_0: $real] :
( ( $less @ 0.0 @ V_x_dot_0 )
=> ( $less @ 0.0 @ ( V_f @ V_x_dot_0 ) ) )
& ! [V_w: $real,V_x: $real,V_y: $real,V_z: $real] :
( ( ( ( $product @ V_w @ V_x )
= ( $product @ V_y @ V_z ) )
& ( $greater @ V_x @ 0.0 )
& ( $greater @ V_y @ 0.0 )
& ( $greater @ V_w @ 0.0 )
& ( $greater @ V_z @ 0.0 ) )
=> ( ( $quotient @ ( $sum @ ( '^/2' @ ( V_f @ V_w ) @ 2.0 ) @ ( '^/2' @ ( V_f @ V_x ) @ 2.0 ) ) @ ( $sum @ ( V_f @ ( '^/2' @ V_y @ 2.0 ) ) @ ( V_f @ ( '^/2' @ V_z @ 2.0 ) ) ) )
= ( $quotient @ ( $sum @ ( '^/2' @ V_w @ 2.0 ) @ ( '^/2' @ V_x @ 2.0 ) ) @ ( $sum @ ( '^/2' @ V_y @ 2.0 ) @ ( '^/2' @ V_z @ 2.0 ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------