TPTP Problem File: RAL040^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : RAL040^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Real Algebra
% Problem : International Mathematical Olympiad, 2004, Problem 2
% Version : [Mat16] axioms : Especial.
% English : Find all polynomials f with real coeffcients such that for all
% reals a,b,c such that ab + bc + ca = 0 we have the following
% relations f (a - b) + f (b - c) + f (c - a) = 2f (a + b + c).
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : IMO-2004-2.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3485 ( 728 unt;1199 typ; 0 def)
% Number of atoms : 6519 (2211 equ; 0 cnn)
% Maximal formula atoms : 21 ( 2 avg)
% Number of connectives : 39632 ( 104 ~; 233 |;1173 &;35995 @)
% (1095 <=>;1032 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4479 ( 371 atm;1216 fun; 953 num;1939 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1210 (1167 usr; 64 con; 0-9 aty)
% Number of variables : 8060 ( 406 ^;7088 !; 430 ?;8060 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: RCF+PA; Score: 7; Author: Jumma Kudo;
% Generated: 2014-10-31
% : Answer
% ^ [V_P_dot_0: 'R2R'] :
% ? [V_a_dot_0: $real,V_b_dot_0: $real] :
% ( V_P_dot_0
% = ( 'poly-fun/1' @ ( 'cons/2' @ $real @ V_a_dot_0 @ ( 'cons/2' @ $real @ 0.0 @ ( 'cons/2' @ $real @ V_b_dot_0 @ ( 'nil/0' @ $real ) ) ) ) ) ) )
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf(p_qustion,conjecture,
( 'find/1' @ 'R2R'
@ ^ [V_P: 'R2R'] :
( ? [V_as: 'ListOf' @ $real] :
( V_P
= ( 'poly-fun/1' @ V_as ) )
& ! [V_a: $real,V_b: $real,V_c: $real] :
( ( ( $sum @ ( $product @ V_a @ V_b ) @ ( $sum @ ( $product @ V_b @ V_c ) @ ( $product @ V_c @ V_a ) ) )
= 0.0 )
=> ( ( $sum @ ( 'funapp/2' @ V_P @ ( $difference @ V_a @ V_b ) ) @ ( $sum @ ( 'funapp/2' @ V_P @ ( $difference @ V_b @ V_c ) ) @ ( 'funapp/2' @ V_P @ ( $difference @ V_c @ V_a ) ) ) )
= ( $product @ 2.0 @ ( 'funapp/2' @ V_P @ ( $sum @ V_a @ ( $sum @ V_b @ V_c ) ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------