TPTP Problem File: RAL038^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : RAL038^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Real Algebra
% Problem : International Mathematical Olympiad, 2000, Problem 2
% Version : [Mat16] axioms : Especial.
% English : A, B, C are positive reals with product 1. Prove that (A - 1 +
% 1/B)(B - 1 + 1/C)(C - 1 + 1/A) <= 1.
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : IMO-2000-2.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3485 ( 728 unt;1199 typ; 0 def)
% Number of atoms : 6389 (2209 equ; 0 cnn)
% Maximal formula atoms : 20 ( 2 avg)
% Number of connectives : 39630 ( 104 ~; 233 |;1175 &;35991 @)
% (1095 <=>;1032 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4492 ( 375 atm;1216 fun; 962 num;1939 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1206 (1163 usr; 60 con; 0-9 aty)
% Number of variables : 8058 ( 405 ^;7088 !; 429 ?;8058 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: RCF; Score: 7; Author: Munehiro Kobayashi;
% Generated: 2014-11-13
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf(p,conjecture,
! [V_A: $real,V_B: $real,V_C: $real] :
( ( ( 1.0
= ( $product @ V_A @ ( $product @ V_B @ V_C ) ) )
& ( $less @ 0.0 @ V_A )
& ( $less @ 0.0 @ V_B )
& ( $less @ 0.0 @ V_C ) )
=> ( $lesseq @ ( $product @ ( $sum @ ( $difference @ V_A @ 1.0 ) @ ( $quotient @ 1.0 @ V_B ) ) @ ( $product @ ( $sum @ ( $difference @ V_B @ 1.0 ) @ ( $quotient @ 1.0 @ V_C ) ) @ ( $sum @ ( $difference @ V_C @ 1.0 ) @ ( $quotient @ 1.0 @ V_A ) ) ) ) @ 1.0 ) ) ).
%------------------------------------------------------------------------------