TPTP Problem File: RAL037^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : RAL037^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Real Algebra (Functions)
% Problem : International Mathematical Olympiad, 1998, Problem 6
% Version : [Mat16] axioms : Especial.
% English : Determine all finite sets S of at least three points in the plane
% which satisfy the following condition: for any two distinct points
% A and B in S, the perpendicular bisector of the line segment AB is
% an axis of symmetry for S.
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : IMO-1998-6.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3485 ( 728 unt;1199 typ; 0 def)
% Number of atoms : 6409 (2211 equ; 0 cnn)
% Maximal formula atoms : 20 ( 2 avg)
% Number of connectives : 39625 ( 104 ~; 233 |;1176 &;35983 @)
% (1095 <=>;1034 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4482 ( 376 atm;1205 fun; 960 num;1941 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2409 (2409 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1209 (1165 usr; 63 con; 0-9 aty)
% Number of variables : 8061 ( 406 ^;7089 !; 430 ?;8061 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: ZF; Score: 7; Author: Jumma Kudo;
% Generated: 2014-11-06
% : Answer
% ^ [V_y_dot_0: $int] : ( V_y_dot_0 = 120 ) )
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf(p_qustion,conjecture,
( 'find/1' @ $int
@ ^ [V_y: $int] :
? [V_f: $int > $int] :
( ! [V_n_dot_0: $int] :
( ( $lesseq @ V_n_dot_0 @ 0 )
=> ( ( V_f @ V_n_dot_0 )
= 0 ) )
& ! [V_n: $int] :
( ( $greater @ V_n @ 0 )
=> ( $greater @ ( V_f @ V_n ) @ 0 ) )
& ! [V_s: $int,V_t: $int] :
( ( ( $less @ 0 @ V_s )
& ( $less @ 0 @ V_t ) )
=> ( ( V_f @ ( $product @ ( 'int.^/2' @ V_t @ 2 ) @ ( V_f @ V_s ) ) )
= ( $product @ V_s @ ( 'int.^/2' @ ( V_f @ V_t ) @ 2 ) ) ) )
& ( V_y
= ( V_f @ 1998 ) ) ) ) ).
%------------------------------------------------------------------------------